
52

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

DOI: 10.4018/978-1-7998-4165-4.ch003

ABSTRACT

Software architecture design, when performed in context of agile software development (ASD), sometimes
referred to as “agile architecting,” promotes the emerging and incremental design of the architectural
artifact in a sense of avoiding “big design upfront” (BDUF). This chapter presents the Agile Modeling
Process for Logical Architectures (AMPLA) method, an approach for supporting the emergence of a
candidate (logical) architecture, rather than BDUF, the architecture in an early phase. The architecture
then emerges throughout agile iterations, where AMPLA plays a key contribution for providing trace-
ability between models, from the business need to service specifications, ranging from design stages to
deployment, hence covering a software development life cycle (SDLC).

INTRODUCTION

At the time that the ‘Agile Manifesto’ (Agile Alliance, 2001) was proposed, there was a big shift on
focusing in delivering software and less in technical documentation and specifications. Based in one of
the values of the Manifesto, ‘Working software over comprehensive documentation’, specification of
requirements have been reducing to as minimum as possible. Thus, the use of software models was also

AMPLA:
An Agile Process for Modeling

Logical Architectures

Nuno António Santos
 https://orcid.org/0000-0002-8247-7253

CCG, Universidade do Minho, Portugal & ZGDV Institute, Portugal

Nuno Ferreira
 https://orcid.org/0000-0003-3561-331X

i2S Insurance Knowledge, S.A., Portugal

Ricardo J. Machado
CCG, Universidade do Minho, Portugal & ZGDV Institute, Portugal

53

AMPLA

reduced, both in requirements and in design tasks, where only models that actually help teams develop
software are used (Schwaber & Beedle, 2001).

In plan-driven approaches (e.g., Waterfall), tasks related to Requirements Engineering (RE) disci-
pline are traditionally managed in a phase separated in time from design and development. In change-
driven approaches, like ASD, RE discipline – also called “Agile RE” – activities remain the same but
are executed continuously (Grau & Lauenroth, 2014), and takes an iterative discovery approach (Cao
& Ramesh, 2008). Additionally, requirements modeling require an agile approach in order to prevent
unnecessary efforts in “You Aren’t Gonna Need It” (YAGNI) features.

In ASD frameworks, the requirements are included in a product backlog, typically in form of use
User Stories (IIBA, 2017) as items in the backlog for “reminders of a conversation” about a functional-
ity. However, using only User Stories, without attached requirements specifications or models, may be
insufficient to assure a common understanding or, in case of multi-teams, to clearly define inter-systems
interaction.

Typically, a first release on a new product encompasses a product’s subset able to address priority
scenarios, previously identified in order to respond to market needs. In fact, many of these product re-
leases are market-driven, where the release is deployed into the market so it is possible to get feedback
from it, i.e., a minimum viable product (MVP). Alongside with these requirements concerns, projects
struggle to design candidate architectures for the MVP, endangering development when they conclude
that the architecture requires modifications and updates. In an era where software development is more
and more agile-oriented, the upfront effort is replaced by the emergence of the design throughout itera-
tive cycles. Such efforts are in opposition to “Big Design Upfront” (BDUF). In ASD contexts, BDUF
approaches often result in features that are disregarded after some time (YAGNI features).

This chapter introduces an Agile Modeling Process for Logical Architectures (AMPLA), an approach
for supporting the emergence of a candidate (logical) architecture, rather than BDUF the architecture in
an early phase. AMPLA includes the core known features within the initial phase and designs a logical
architecture using a stepwise method, without refining information. The emerging characteristics of
AMPLA are supported in four stages, two performed before development cycles or Sprints and two in
parallel with ASD cycles: (1) eliciting a small set of high-level requirements; (2) deriving a candidate
logical architecture; (3) define subsystems for refinement; and (4) refine requirements and the architec-
ture regarding the subsystem in small cycles or Sprints. As the name implies, AMPLA is guided by the
Agile Modeling (AM) (S Ambler, 2002) philosophy. AM is about modeling practices, aiming to deliver
small portions of models and collecting feedbacks, within ASD processes. AMPLA is driven to be
“lean”, because it aims to minimize waste within modeling, since the emerging modeling of the features
enables leaving out YAGNI features. AMPLA is based in UML models, namely Use Cases diagrams
for requirements, and Components diagrams for the logical architecture design. A logical architecture
is a view that primarily supports the functional requirements, taken mainly from the problem domain
(Kruchten, 1995). For the architecture derivation, AMPLA uses the Four-Step-Rule-Set (4SRS) method
(Ferreira, Santos, Machado, Fernandes, & Gasevic, 2014) in order to assure the logical components are
aligned with the functional requirements. AMPLA is demonstrated in this chapter within a research
project called Unified Hub for Smart Plants (UH4SP).

25 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/ampla/259171

Related Content

Using Class Diagram and UML Component
 (2024). Design and Implementation of Software Engineering for Modern Web Applications (pp. 125-159).

www.irma-international.org/chapter/using-class-diagram-and-uml-component/352539

Retrofitting Existing Web Applications with Effective Dynamic Protection Against SQL Injection

Attacks
San-Tsai Sunand Konstantin Beznosov (2010). International Journal of Secure Software Engineering (pp.

20-40).

www.irma-international.org/article/retrofitting-existing-web-applications-effective/39007

Fuzzy Set-Based Reliability Estimation
 Sampa ChauPattnaik, Mitrabinda Rayand Mitalimadhusmita Nayak (2023). International Journal of

Software Innovation (pp. 1-14).

www.irma-international.org/article/fuzzy-set-based-reliability-estimation/315733

An Analysis of the Imbursement of Currency in a Debt-Based Money-Information System
G. A. Swanson (2010). Emerging Systems Approaches in Information Technologies: Concepts, Theories,

and Applications (pp. 119-136).

www.irma-international.org/chapter/analysis-imbursement-currency-debt-based/38177

Development and Validation of the Method for Value Assessment of SOA-Based IS Projects
Alexey Likhvarevand Eduard Babkin (2014). International Journal of Information System Modeling and

Design (pp. 49-82).

www.irma-international.org/article/development-and-validation-of-the-method-for-value-assessment-of-soa-based-is-

projects/106934

http://www.igi-global.com/chapter/ampla/259171
http://www.irma-international.org/chapter/using-class-diagram-and-uml-component/352539
http://www.irma-international.org/article/retrofitting-existing-web-applications-effective/39007
http://www.irma-international.org/article/fuzzy-set-based-reliability-estimation/315733
http://www.irma-international.org/chapter/analysis-imbursement-currency-debt-based/38177
http://www.irma-international.org/article/development-and-validation-of-the-method-for-value-assessment-of-soa-based-is-projects/106934
http://www.irma-international.org/article/development-and-validation-of-the-method-for-value-assessment-of-soa-based-is-projects/106934

