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Oneof thelargest direct-selling companiesintheworld, with
salesforcesintheU.S. and abroad, sellsalineof beauty, health,
and fitness products through a network of independent sales
representatives. Currently intheUnited Statesal one, therepresen-
tative population hasgrownto several hundred thousand individu-
als. Representatives purchase products from the company at a
discount, andinturn, sell themto their own customers, earning
revenuethrough volumediscounts. Customersorder their products
from catal ogsthat contain amix of seasonally appropriateitems
along with core and new products, and special promotions to
choosefrom. Toassist itsfield salesforce, thisconsumer products
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organization providesincentives, salesrecognition awards, and
training programsin beauty consultation and sal es effectiveness.

Given such alarge and varied sales force, the potential of
experiencing significant sales-rep turnover exists. Asaresult, the
company needstotarget itssalesand marketing effortsfor maxi-
mum sal es effectiveness. One of thetargeting measurescurrently
being evaluatedislifetimevalue: the expected value of arepre-
sentativefor thelength of therepresentative’ stenure.

Oneof theprinciplesof direct marketingisthat it generally
costslessto keep an existing customer than to acquireanew one.
This is also applicable to sales representatives, as the costs
associated with advertising for new representatives, meetingwith
and eval uating prospects, and training new hirescan be substantial
compared withthe costsassociated with effortsto retain current
representatives. Anearly warning systemthat identifiesrepresen-
tativeswho areat risk of attrition, along with an assessment of their
futurevalue, would support aretention program that targetsthe
most profitable customersfrom amongthe“at risk” population.

Concept of Lifetime Value

How canweidentify our best customers?Many companiesuse
a measure of lifetime value (LTV) for a customer. LTV is an
estimate of the total revenue generated by a customer over the
entireduration of the customer relationship. Itisgenerally mea-
suredintermsof grosssales, althoughtotal profit, whenavailable,
can beamore accurate measure.

Lifetimevaluefor asales-repisaprojection, or forecast, of
thefuture salesproduced by arepresentative from the measure-
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