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INTRODUCTION

Genetic programming (GP) is still rather un-
known, even though it has recently obtained 
spectacular results: John Koza showed in his latest 
book (Koza et al., 2003) that genetic programming 
can routinely produce solutions that are competi-
tive with human intelligence, without requiring 
one to be an expert in the domain of the problem 
to be solved.

A Bit of history

The idea of evolving computer programs dates 
back to the dawn of computing. Back in 1958, 
Friedberg made several attempts to have a com-
puter program itself (Friedberg, 1958; Friedberg, 
Dunham, & North, 1958) using what would now be 
called mutations. He started with a “population” 
of random programs, and modified the contents 
stochastically, trying to improve the results.

Later on, Smith (1980), who was working 
on learning classifier systems, introduced small 

programs in the rules he was evolving. However, 
the modern vision of genetic programming starts 
with a small but seminal paper by Cramer (1985), 
who uses a tree-like variable size structure to 
represent a program. Programs are not written in 
LISP (as suggested by Koza later on) but in TB 
(a tree version of the JB language). Along with 
mutation, Cramer also uses a standard subtree 
crossover, introduces as well a mono-parental 
crossover, and insists on the necessity to create 
closed genetic operators. Above all, he evolves 
his population of programs with an evolutionary 
engine.

All the seeds were therefore present for the 
domain to grow, but as for Manderick and Moy-
son and Ant Colony Optimization (cf. Chapter 
III), Cramer somehow failed to promote his 
work enough, and nothing major happened in 
this domain for several years. In fact, another 
major problem was that computers of this era 
were not powerful enough to obtain really good 
results with GP.
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Genetic Programming à la Koza

By the beginning of the 1990s, genetic program-
ming made its comeback thanks to Koza (1989, 
1992, 1994; Koza et al., 1999, 2003) who put in 
a lot of energy (and computer power) to develop 
the ideas introduced by Cramer and his prede-
cessors.

Genetic programming is nothing else than 
standard evolutionary techniques (described in 
Chapter IV) applied to individuals that imple-
ment programs. Standard evolutionary algo-
rithms evolve potential solutions to a problem to 
be optimized. Most of the time, EA individuals 
are made of a list of parameters that are passed 
over to a “fitness function” used to evaluate the 
individual.

In genetic programming, an individual is a 
program, or more often a function. The main (and 
only?) difference with EAs is that GP executes 
the individuals to evaluate them. Another differ-
ence is that in most of the cases, GP uses variable 
length individuals where standard EAs use fixed 
size individuals.

This chapter presents standard genetic pro-
gramming à la Koza, including hints, suggestions, 
and pointers to state-of-the-art papers that will 
hopefully allow newcomers to obtain good results 
with this delicate technique.

STANDARD GENETIC 
PROGRAMMING

Representation of an Individual

As is the case in EAs, using the good represen-
tation for a particular problem is quite essential, 
because the chosen representation more or less 
determines the search space in which the individu-
als will evolve: it will be very difficult to obtain 
an iterative program with a representation that 
does not allow loops or recursive calls. On the 
contrary, if everything is allowed, the search space 

may be so large that finding compiling programs 
that stop correctly or simply do not hang will be 
already very difficult.

The individual representation described below 
corresponds to the most common one¾that is, the 
representation that Koza used for the development 
of what is now standard genetic programming. 
In order to reduce the search space and find an 
individual structure adapted to the representation 
of a program, Koza naturally chose a functional 
language for several reasons:

• Syntactically speaking, with a purely func-
tional representation, there is no need to de-
fine a grammar recognizing valid programs, 
provided the set of functions is closed.

• Functional languages limit side effects, 
which, as a side effect, minimizes bug oc-
currence.

• Above all, a functional program can very 
easily be implemented as a tree: nodes are 
operators that have as many children that 
they need operands and that return to their 
parent the result of their evaluation.

For instance, a function calculating a factorial:

Function fact(n) {
 I f n=0 return �
 Else return fact(n-�)
}

can be simply represented by the tree in Figure 
1.

Moreover, of all different possible representa-
tions, a tree structure can naturally implement 
variable size individuals on which crossover 
operators can be very easily applied: one only 
needs to swap two subtrees (cf. section below on 
genetic operators).

Of all available functional languages, LISP is 
certainly the most usable. It was quite popular at 
the end of the 1980s, and some computers were 
developed around its specificities. LISP was there-
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