Chapter 2
 An Introduction to Intersection Graphs

Madhumangal Pal
Vidyasagar University, India

Abstract

In this chapter, a very important class of graphs called intersection graph is introduced. Based on the geometrical representation, many different types of intersection graphs can be defined with interesting properties. Some of them—interval graphs, circular-arc graphs, permutation graphs, trapezoid graphs, chordal graphs, line graphs, disk graphs, string graphs-are presented here. A brief introduction of each of these intersection graphs along with some basic properties and algorithmic status are investigated.

INTRODUCTION

The graphs are very useful tool to model a huge number of real life problems starting from science, technology, medical science, social science and many other areas. The geometrical and topological stuctures of any communication system such as Internet, Facebook, Whatsapp, ResearchGate, Twiter, etc. are based on graph. So graph theory is an old as well as young topic of research as till today graphs are used to solve several problems. Depending on the geometrical structures and properties different type of graphs are defined, viz. path, cycle, tree, complete graph, planar graph, perfect graph, chordal graph, tolarence graph, intersection graph, etc.

In this chapter, diferent types of intersection graphs (IntGs) are defined and investigated their properties.
Let $S=\left\{S_{1}, S_{2}, \ldots\right\}$ be a finite or infinite set of sets. For each set S_{i} we consider a vertex (v_{i}) and there is an edge between the vertices v_{i} and v_{j} if the corresponding sets $S_{i} \cap S_{j}$ have a non-empty intersection. That is, the set of vertices $V=\left\{v_{i}, v_{2}, \ldots\right\}$ and the set of edges
$E=\left\{\left(v_{i}, v_{j}\right): S_{i} \cap S_{j} \neq \varphi\right\}$.

The resultant graph is called intersection graph.

An Introduction to Intersection Graphs

Table 1. Table of abbreviations

Abbreviation	Description
IntG	Intersection graph
InvG	Interval graph
CirG	Circular-arc graph
PerG	Permutation graph
TraG	Trapezoidal graph
TolG	Tolerance graph
PCA	Proper circular-arc
UCA	Unit circular arc
GIG	Grid intersection graphs

One important class of graph is perfect graph defined as follows:
A graph (undirected) $G=(V, E)$ is called χ-perfect if for all

$$
A \subseteq V, \omega(G(A))=\chi(G(A))
$$

and G is called α-perfect if for all
$A \subseteq V, \alpha(G(A))=\kappa(G(A))$,
where $G(A)$ is the induced subgraph by the subset A. A graph is said to be perfect if it is either χ-perfect or α-perfect. In the famous perfect graph theorem is it proved that a graph is χ-perfect if and only if it is α-perfect.

An undirected graph G is said to be triangulated if every cycle of length four or more has a chord. This type of graphs are also known as chordal graphs, monotone transitive graphs, rigid-circuit graphs and perfect elimination graphs.

A clique of a graph $G=(V, E)$ is a set of vertices $S \subseteq V$ in which all the vertices of S are adjecent, i.e. $\left(v_{i}, v_{j}\right) \in E$ for all $v_{i}, v_{j} \in V$. A maximal clique is a special type of clique for which no further vertex can be added so that it remains a clique. That is, if C is a maximal clique of the graph $G=(V, E)$, then $C \cup\{v\}$ is not a clique for $v \notin C$ and any $v \in V$. A clique is said to be maximum if the cardinality is maximum among all others cliques of the graph.

The clique graph $C(G)$ of a graph G is the IntG of the family of all cliques of G. Cographs are defined as the graphs which can be reduced to single vertices by recursively complementing all connected subgraphs. This graphs are known as complement reducible graphs.

Let $N[v](N(v))$ be the closed (open) neighbour of the vertex v. A vertex v is called simplicial if and only if $N[v]$ is a clique. The ordering $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of V is called a perfect elimination ordering if and only if for all $i \in\{1,2, \ldots, n\}$ the vertex v_{i} is simplicial in G_{i}, where

40 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/an-introduction-to-intersection-graphs/235531

Related Content

Artificial Higher Order Neural Network Nonlinear Models: SAS NLIN or HONNs?
Ming Zhang (2009). Artificial Higher Order Neural Networks for Economics and Business (pp. 1-47). www.irma-international.org/chapter/artificial-higher-order-neural-network/5275

Tripartite and Quadpartite Size Ramsey Numbers for All Pairs of Connected Graphs on Four Vertices
Chula J. Jayawardene (2020). Handbook of Research on Advanced Applications of Graph Theory in Modern Society (pp. 251-266). www.irma-international.org/chapter/tripartite-and-quadpartite-size-ramsey-numbers-for-all-pairs-of-connected-graphs-on-four-vertices/235539

SAS Nonlinear Models or Artificial Higher Order Neural Network Nonlinear Models? (2021). Emerging Capabilities and Applications of Artificial Higher Order Neural Networks (pp. 174-217). www.irma-international.org/chapter/sas-nonlinear-models-or-artificial-higher-order-neural-network-nonlinearmodels/277678

Fuzzy Graphs and Fuzzy Hypergraphs
Michael G. Voskoglouand Tarasankar Pramanik (2020). Handbook of Research on Advanced Applications of Graph Theory in Modern Society (pp. 437-468).
www.irma-international.org/chapter/fuzzy-graphs-and-fuzzy-hypergraphs/235548
Neuromorphic Adiabatic Quantum Computation
Shigeo Satoand Mitsunaga Kinjo (2009). Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters (pp. 352-375).
www.irma-international.org/chapter/neuromorphic-adiabatic-quantum-computation/6775

