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ABSTRACT

A recent feature in the Qualtrics® Research Core Platform 2018 (or Qualtrics 
Research Suite) is a basic self-explicated conjoint analysis, which is a research 
method to understand respondent preferences in a real-world context with limited 
available features and selection tradeoffs at respective price points. This chapter 
will introduce the basic self-explicated conjoint analysis tool and how to design 
questions for this, how to deploy the conjoint analysis (as either part of a larger 
survey or as a stand-alone survey), and how to analyze and use the resulting data. 
This chapter will describe the assertability of the findings based on the back-end 
factorial statistical analysis and suggest ways to explore beyond the initial conjoint 
analysis.

INTRODUCTION

On a typical day, a person may make hundreds of decisions based on his or her 
conscious, subconscious and unconscious preferences. These decisions may be 
mundane, but they may also be surprisingly persistent; taken together, individual 
decisions may have personal impacts, including larger-scale emergent ones. 
Individuals and organizations have an interest in eliciting client preferences, so they 
may provide the products and services that others want. There are a certain class 
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of survey instruments that enable choice experiments, through “choice modeling,” 
a term of art that collectively refers to “choice experiments, contingent ranking, 
contingent rating, (and) paired comparisons” (Hanley, Mourato, & Wright, 2001, p. 
438), among others. “Choice experiments” require respondents to “choose between 
two or more alternatives (where one is the status quo)”; “contingent ranking” research 
requires respondents to “rank a series of alternatives”; “contingent rating” research 
requires respondents to “score alternative scenarios on a scale of 1 – 10”; “paired 
comparisons” require respondents to “score pairs of scenarios on similar scale” 
(Hanley, Mourato, & Wright, 2001, p. 438).

One basic and popular form of choice experiments research is the “conjoint 
analysis” (CA), in which respondents make selections of particular attributes or 
packages of attributes based on their own preferences about a particular product, 
service, or decision space (in real-world and practical contexts and sometimes 
in theorized ones). “Conjoint analysis” is a collective term, “covering both the 
theory and methods of a variety of different paradigms that can be used to design, 
implement and analyse (sic) judgment data experiments” …or “evaluative rankings 
or ratings of a set of multi-attribute alternatives” (Louviere, 1988, pp. 94 – 95). The 
sets of multi-attribute alternatives may be constructed using experimental or quasi-
experimental design techniques.

Conjoint analyses come in various types. These variants are…

… based on the way preference scores are elicited (e.g., ratings, rankings, self-
explicated, constant sum, choice), the type of designs used (e.g., full factorial, 
fractional factorial, adaptive), the type of models estimated (e.g., regression, logit, 
probit, hierarchical Bayes), and the estimation procedures employed to make 
inferneces (e.g., maximum likelihood, Markov Chain Monte Carlo) (Ding, Grewal, 
& Liechty, 2004, p. 1). 

One classification of types is by those in a conjoint analysis suite in Qualtrics, 
which include the following: self-explicated conjoint analysis, choice-based / discrete 
choice, adaptive choice-based, menu-based, and MaxDiff (“What is a conjoint…?” 
2018). Other types differentiate between classic conjoint analyses and adaptive ones, 
which are computerized and adapt to the feedback from the survey participants. 
“Conjointedness” refers to the “combining of all (factors) involved,” so preferences 
in a constrained practical environment become clearer.

A basic self-explicated conjoint analysis in Qualtrics enables the building of a 
conjoint module that presents various specific attributes (features, dimensions) of a 
product, service, or choice space; the attributes are optimally “orthogonal,” with no 
overlap with other features (so the analysis may be discriminative between attributes 
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