
197

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

DOI: 10.4018/978-1-5225-7271-8.ch009

ABSTRACT

The main application integration approaches, the service-oriented architecture (SOA) and representa-
tional state transfer (REST) architectural styles, are rather different in their modeling paradigm, forcing
application developers to choose between one and the other. In addition, both introduce more application
coupling than required, since data schemas need to be common, even if not all instantiations of those
schemas are used. This chapter contends that it is possible to improve this scenario by conceiving a new
architectural style, structural services, which combines services and resources to reduce the semantic gap
with the applications, allowing to tune the application integration between pure service-based and pure
resource-based, or an intermediate mix. Unlike REST, resources are not constrained to offer a fixed set
of operations, and unlike SOA, services are allowed to have structure. In addition, compliance is used
to reduce coupling to the bare minimum required by the actually used application features.

INTRODUCTION

The world is increasingly distributed and most real case scenarios involve interaction between distrib-
uted applications that need to cooperate to achieve common or complementary goals. Examples of such
scenarios include:

•	 Enterprise-class applications (Romero, & Vernadat, 2016), deployed on either conventional or
cloud computing platforms (Ritter, May, & Rinderle-Ma, 2017), most likely including hybrid
clouds, integrating the enterprise’s owned infrastructure with one or more public clouds.

Improving Application
Integration by Combining
Services and Resources

José Carlos Martins Delgado
University of Lisbon, Portugal

198

Improving Application Integration by Combining Services and Resources
﻿

•	 Mobile cloud computing (Abolfazli, Sanaei, Sanaei, Shojafar, & Gani, 2016), particularly given
the ever-increasing pervasiveness of smartphones and tablets that created a surge in the BYOD
(Bring Your Own Device) tendency (Weeger, Wang, & Gewald, 2016).

•	 The Internet of Things (Botta, de Donato, Persico, & Pescapé, 2016), with an explosive develop-
ment rate that raises the need to integrate software applications with the physical world, includ-
ing sensor networks (Iyengar & Brooks, 2016). Al-Fuqaha, Guizani, Mohammadi, Aledhari, and
Ayyash (2015) provide estimates that indicate that the number of Internet-capable, autonomous
devices greatly outnumber human-operated devices, which means that the Internet is no longer
dominated by human users, but rather by small computer-based devices that require technologies
adequate to them, rather than to full-fledged servers.

The world is also increasingly dependent on computers, generating and exchanging more and more
data, either at business, personal, or sensor levels. This raises the integration problem to a completely
new level, in which conventional integration technologies (such as HTTP, XML, JSON, Web Services,
and RESTful APIs) expose their limitations. These technologies were conceived initially for human
interaction, with text as the main format and subsecond time scales, not for heavy-duty, machine-level
binary data exchange. These new integration problems need new solutions.

Integration (Panetto & Whitman, 2016) can be broadly defined as the act of instantiating a given
method to design or adapt two or more systems, so that they cooperate and accomplish one or more com-
mon goals. What these words really mean depends largely on the domain to which the systems belong,
although there is a pervasive, underlying notion that these systems are active and reacting upon stimuli
sent by others, in order to accomplish higher-level goals than those achievable by each single system.

To interact, applications must be interoperable, i.e., able to meaningfully operate together. Interoper-
ability (Agostinho, Ducq, Zacharewicz, Sarraipa, Lampathaki, Poler, & Jardim-Goncalves, 2016) is a
characteristic that relates systems with this ability and is defined by the 24765 standard (ISO, 2010) as
the ability of two or more systems or components to exchange information and to use the information that
has been exchanged. This means that merely exchanging information is not enough. Interacting systems
must also be able to understand it and to react according to each other’s expectations.

Interoperability is distinct from integration. Interoperability is a necessary but not sufficient condition
for integration, which must realize the potential provided by interoperability. This is an inherently hard
problem, since system interaction occurs at several levels of detail, from very low level (physical com-
munication) to very high level (such as the purpose of the interacting parties to engage in an interaction).

Another problem is coupling (Bidve, & Sarasu, 2016), which provides an indication of how much
applications are intertwined.

Interoperability and coupling are two facets of the same problem, application integration, and reflect
two unfortunately conflicting goals:

•	 Interoperability: Applications need to interact to accomplish collaboration. This necessarily en-
tails some form of mutual knowledge and understanding, but creates dependencies that may ham-
per the evolution (changes) of these applications.

•	 Decoupling: Applications should not have dependencies on others, in order to be able to evolve
freely and dynamically. Unfortunately, independent applications do not understand each other
and are not able to interact, which means that some form of coupling is unavoidable to achieve
interoperability.

28 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/improving-application-integration-by-combining-

services-and-resources/216339

Related Content

Improved Data Partitioning for Building Large ROLAP Data Cubes in Parallel
Ying Chen, Frank Dehne, Todd Eavisand A. Rau-Chaplin (2008). Data Warehousing and Mining: Concepts,

Methodologies, Tools, and Applications (pp. 3176-3193).

www.irma-international.org/chapter/improved-data-partitioning-building-large/7827

Comprehensibility of Data Mining Algorithms
Zhi-Hua Zhou (2005). Encyclopedia of Data Warehousing and Mining (pp. 190-195).

www.irma-international.org/chapter/comprehensibility-data-mining-algorithms/10591

Model Identification Through Data Mining
Diego Liberati (2008). Data Warehousing and Mining: Concepts, Methodologies, Tools, and Applications

(pp. 2281-2288).

www.irma-international.org/chapter/model-identification-through-data-mining/7761

XML Object Identification
 (2014). Innovative Techniques and Applications of Entity Resolution (pp. 140-170).

www.irma-international.org/chapter/xml-object-identification/103247

Heterogeneous Gene Data for Classifying Tumors
Benny Yiu-ming Fungand Vincent To-yee Ng (2005). Encyclopedia of Data Warehousing and Mining (pp.

550-554).

www.irma-international.org/chapter/heterogeneous-gene-data-classifying-tumors/10658

http://www.igi-global.com/chapter/improving-application-integration-by-combining-services-and-resources/216339
http://www.igi-global.com/chapter/improving-application-integration-by-combining-services-and-resources/216339
http://www.irma-international.org/chapter/improved-data-partitioning-building-large/7827
http://www.irma-international.org/chapter/comprehensibility-data-mining-algorithms/10591
http://www.irma-international.org/chapter/model-identification-through-data-mining/7761
http://www.irma-international.org/chapter/xml-object-identification/103247
http://www.irma-international.org/chapter/heterogeneous-gene-data-classifying-tumors/10658

