Chapter 1 Bioinformatics

Mark A. Ragan The University of Queensland, Australia

ABSTRACT

Bioinformatics has emerged as new discipline at the interface of molecular bioscience with mathematics, computer science, and information technology. Bioinformatics is driven by data arising from highthroughput technologies in molecular bioscience. To enable biological discovery, bioinformatics draws on and extends technologies for data capture, management, integration and mining, computing, and communication technology. The rise of genomics has been a key driver for bioinformatics. Genomics, however, was never an end unto itself, but rather was intended to enable the understanding of complex biological systems. Bioinformatics continues to evolve in support of its constituent domains and, increasingly, their integration into genome-scale molecular systems biology. This chapter presents bioinformatics first from the perspective of computer science and information technology, then from the perspective of bioscience. In practice these perspectives often merge, making bioinformatics a rich, vibrant area of multidisciplinary research and application.

INTRODUCTION

Over the past 30 years, bioinformatics has emerged as new discipline at the interface of molecular bioscience with mathematics, computer science and information technology. Bioinformatics is driven by data arising from high-throughput technologies in molecular bioscience including DNA and genome sequencing, gene expression analysis, protein and RNA structure characterisation, and bio-imaging. To enable biological discovery, bioinformatics draws on and extends technologies for data capture, management, integration and mining, computing, and communication technology including the Internet. The rise of genomics, from the first bacterial and model-organism projects to the Human Genome Projects and the thousands of genome projects that have followed, has been a key driver for bioinformatics, and in turn has enabled these projects to be completed and their results applied. Genomics, however, was never an end unto itself, but rather was intended to enable the understanding of complex biological systems. Bioinformatics continues to evolve in support of its constituent domains and, increasingly, their integration into genome-scale molecular systems biology.

DOI: 10.4018/978-1-5225-7489-7.ch001

Bioinformatics

This article presents bioinformatics first from the perspective of computer science and IT, then from the perspective of bioscience. In practice these perspectives often merge, making bioinformatics a rich, vibrant area of multidisciplinary research and application.

BACKGROUND

The term *bioinformatics* was introduced in 1970 in reference to the study of informatic processes in biological systems (Hogeweg, 2011). In this original usage, *bioinformatics* encompassed "how living systems gather, process, store and use information" (Nurse, 2008). Never widely adopted, this usage was superseded in the late 1980s when bioinformatics, as presently understood, emerged as a new field at the interface of molecular bioscience with computer science and information technology (Dickson, 1987). Today bioinformatics builds on mathematics, statistics and algorithmics, and finds applications across the biosciences particularly in genomics, proteomics, structural biology and molecular systems biology. Biology is increasingly an information science, with bioinformatics a key enabling technology.

Other disciplines have developed at the bioscience - computer science - IT interface, and there is little consensus on where boundaries should be drawn among them. Bioinformatics is sometimes said to focus on the development and application of methods and software tools to acquire, manage, analyse and/or visualise biological data, whereas *computational biology* refers more to the application of these methods and tools to theoretical or applied biological questions (Huerta *et al.*, 2000). *Biomathematics* or *mathematical biology* involves the development or use of mathematical modeling or simulation, while *biostatistics* emphasises experimental design and statistical analysis. *Molecular systems biology* focuses on the inference or analysis of networks of genes, proteins and/or other cellular molecules, while *synthetic biology* applies these technologies to design and engineer new biological functions or organisms.

BIOINFORMATICS FROM THE PERSPECTIVE OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

One way of exploring the interface between molecular bioscience and IT is to track experimental data from their generation, capture and retrieval, through their aggregation and dissemination *via* international data services, to their subsequent analysis. Here I deconstruct data analysis into data models, algorithms, analytical methods and software, workflows and visualisation. This trajectory is common to scientific data, although bioinformatics is notable for its culture of open data, well-established data formats and standards, and data reuse facilitated by large international repositories with associated data services.

Data Generation, Storage and Retrieval

Instruments and experiments generate diverse data types in molecular bioscience. Capturing these primary data and the associated metadata, and managing their storage and retrieval, are primary activities in bioinformatics. The quantities of data generated by DNA-sequencing platforms, in particular, are such that raw data are no longer archived; rather, bioinformatic methods are used to assess quality and extract summaries. Data formats are specific to experimental technologies and, to some extent, instrument manufacturers. In some areas of molecular bioscience, standards have been developed to ensure 12 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/bioinformatics/213579

Related Content

Improving the Entry-to-Practice Education of Radiographers

Terry Ell (2022). Handbook of Research on Improving Allied Health Professions Education: Advancing Clinical Training and Interdisciplinary Translational Research (pp. 124-137). www.irma-international.org/chapter/improving-the-entry-to-practice-education-of-radiographers/302520

Cyber Behaviors in Seeking Health Information

Xiaojun (Jenny) Yuanand José A. Pino (2019). *Advanced Methodologies and Technologies in Medicine and Healthcare (pp. 198-209).* www.irma-international.org/chapter/cyber-behaviors-in-seeking-health-information/213598

Kinect Applications in Healthcare

Roanna Lunand Wenbing Zhao (2019). *Advanced Methodologies and Technologies in Medicine and Healthcare (pp. 391-402).*

www.irma-international.org/chapter/kinect-applications-in-healthcare/213615

Integrating Web-Based Technologies Into the Education and Training of Health Professionals

Michelle Lee D'Abundoand Cara Sidman (2019). Advanced Methodologies and Technologies in Medicine and Healthcare (pp. 327-336).

www.irma-international.org/chapter/integrating-web-based-technologies-into-the-education-and-training-of-healthprofessionals/213609

Digital Occlusal Force Distribution Patterns (DOFDPs): Theory and Clinical Consequences

Robert C. Supple, DMD (2015). Handbook of Research on Computerized Occlusal Analysis Technology Applications in Dental Medicine (pp. 830-904).

www.irma-international.org/chapter/digital-occlusal-force-distribution-patterns-dofdps/122090