Chapter 3
Reverse Engineering in Rehabilitation

Emilia Mikołajewska
Nicolaus Copernicus University, Poland

Marek Macko
Kazimierz Wielki University, Poland

Zbigniew Szczepański
Kazimierz Wielki University, Poland

Dariusz Mikołajewski
Kazimierz Wielki University, Poland

ABSTRACT

Reverse engineering is relatively novel technology, which may revolutionize clinical practice in rehabilitation. This technology may constitute a next step toward patient-tailored therapy, providing customized medical products and increasing effectivity and accessibility of rehabilitation procedures and decreasing cost of manufacturing and time of delivery. Such opportunities need separate research, assessment of associated threats, and dedicated solutions. This chapter aims at investigating the extent to which the available opportunities in the area of application of reverse engineering in rehabilitation are being exploited, including concepts, studies, and observations.

INTRODUCTION

Reverse engineering is relatively novel technology, which may revolutionize clinical practice in rehabilitation. This technology may constitute next step toward patient-tailored therapy, providing customized medical products increasing effectivity and accessibility of rehabilitation procedures and decreasing cost of manufacturing and time of delivery. Such opportunities need separate research, assessment of associated threats, and dedicated solutions.
In this chapter authors investigate the extent to which the available opportunities in the area of application of reverse engineering in rehabilitation are being exploited, including own concepts, studies and observations.

BACKGROUND

The additive manufacturing (AM), called also 3D printing or stereolitography is relatively novel technology developing since 1980s. It constitutes iterative technology based on construction the real objects layer by layer, translating this way digital file (digitized object) into a solid object. Features of such object depend on technology and material used to print, but number of both of them rapidly increases, providing important alternative for traditional manufacturing techniques. Moreover some objects have unique features (e.g. shapes) not comparable with products of traditional manufacturing.

Recent editorial article by Maruthappu & Keogh paid particular attention to potential of 3D printing applications to transform healthcare technologies and organization. Authors divided possible healthcare applications of additive manufacturing into three main groups:

- Internet as decentralised store of blueprints (drugs, equipment, devices, and even body parts) for Early patients-tailored interventions, much quicker and cheaper than traditional delivery solutions,
- Patient–tailored therapy based on medical imaging combined with 3D printing,
- Engineering of 3D printed tissues (Maruthappu & Keogh, 2014; Murphy & Atala, 2014; Seol et al., 2014).

Further implementation of reverse engineering needs additional interdisciplinary research (including randomized controlled trials on patients where available), dedicated methodology, careful assessment of opportunities and threats as far as dedicated solutions.

Reverse Engineering as a Complex Process

Reverse engineering is regarded as quick and cost-effective method of creating functional or nonfunctional copies of existing objects. Process of reverse engineering for rehabilitation purposes is unified to several subsequent stages covered by semi-automated process:

- Digital acquisition of the 3D geometric data: directly from the patient or based on his/her medical records (e.g. using computed tomography – CT or magnetic resonance imaging – MRI),
- Modification/adaptation procedures,
- Creation of 3D model or final product on 3D printer and control of its feasibility: material features, shape, dimensions, patient comfort, etc.

Reverse Engineering for Rehabilitation Support Purposes

Rehabilitation aims at restoration of patient’s functions to the maximum possible degree. Scientists and clinicians are aware that in such person the full capacity available in healthy people can not be achiev-
8 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher’s webpage:
www.igi-global.com/chapter/reverse-engineering-in-rehabilitation/211857

Related Content

Indian National Strategy for Climate Change Adaptation and Mitigation
www.irma-international.org/chapter/indian-national-strategy-for-climate-change-adaptation-and-mitigation/201722

Spatial Analysis of Climate-Viticulture Indices for the Eastern United States
www.irma-international.org/chapter/spatial-analysis-of-climate-viticulture-indices-for-the-eastern-united-states/201698

Geospatial Analysis of Land Loss, Land Cover Change, and Landuse Patterns of Kutubdia Island, Bangladesh
www.irma-international.org/chapter/geospatial-analysis-of-land-loss-land-cover-change-and-landuse-patterns-of-kutubdia-island-bangladesh/212984

Educating for a Sustainable World: Bringing Together Indigenous and Western Knowledges
Asaf Zohar and David R. Newhouse (2019). *Intellectual, Scientific, and Educational Influences on Sustainability Research* (pp. 121-137).
www.irma-international.org/chapter/educating-for-a-sustainable-world/230819

Energy Management Strategies to Improve Electrical Networks Using Storage Systems
www.irma-international.org/chapter/energy-management-strategies-to-improve-electrical-networks-using-storage-systems/169646