
608

��������	0

����(1������������
,������'�����%������������

������������#��������

Andrés L. Medaglia
Universidad de los Andes, Colombia

Eliécer Gutiérrez
Universidad de los Andes, Colombia

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

ABSTRACT

JGA, the acronym for Java Genetic Algorithm, is a computational object-oriented framework
for rapid development of evolutionary algorithms for solving complex optimization problems.
This chapter describes the JGA framework and illustrates its use on the dynamic inventory lot-
sizing problem. Using this problem as benchmark, JGA is compared against three other tools,
namely, GAlib, an open C++ implementation; GADS, a commercial Matlab toolbox; and
PROC GA, a commercial (yet experimental) SAS procedure. JGA has proved to be a flexible
and extensible object-oriented framework for the fast development of single (and multi-
objective) genetic algorithms by providing a collection of ready-to-use modules (Java classes)
that comprise the nucleus of any genetic algorithm. Furthermore, JGA has also been designed
to be embedded in larger applications that solve complex business problems.

INTRODUCTION

Since the conception of genetic algorithms
(GAs), researchers and practitioners alike faced
the problem of building tools which could make
the implementation of their own applications
easier. At the beginning, the most widely used
guide was the “Simple GA code” (SGA) imple-
mentation from Goldberg (1989) built in the

Pascal programming language. Today, there is
a broad array of offerings of genetic algorithm
libraries available in different languages and
computing platforms. For a thorough survey on
the subject, the reader is referred to Pain and
Reeves (2002).

Some of the earliest tools were coded in the
C language. C evolved into C++, adopting the
object-oriented programming (OOP) paradigm.

 609

An Object-Oriented Framework for Rapid Genetic Algorithm Development

The advantage of using the C or C++ language
is mainly its computer efficiency and outstand-
ing performance in terms of speed. In this class,
we found tools such as ECGA (Lobo & Harik,
1999), GALOPPS (Goodman, 2002), and GALib
(Wall, 2005).

ECGA (Extended Compact GA) is a tool
implemented in C++, based on the GA code
from Goldberg, in which the user can replace or
modify the core classes. This tool does not
include templates or heritage concepts, but the
class structure provides independency to every
basic component of a genetic algorithm.

GALOPPS is a flexible generic GA imple-
mentation in C. To make it easier for users to
learn and extend, it was also based upon
Goldberg’s SGA architecture. GALOPPS in-
cludes most of the chromosomal structures and
operators described by Goldberg (1989). The
latest version includes a parallel architecture
mode in which each process can handle one or
several interacting subpopulations.

GAlib contains a set of C++ classes for
building genetic algorithms. GAlib provides a
set of built-in representations and operators
that could be extended and customized. The
built-in chromosomes include binary, integer,
and real arrays of variable length. It also in-
cludes more complex data structures such as
lists and trees. Chromosome initialization, mu-
tation, crossover, and comparison methods can
be customized by deriving classes for the spe-
cific problem on hand. For simple applications,
the user only needs to override the fitness
function class. Some details need to be taken
into account depending on the development
platform.

Other genetic algorithm tools have been
developed for commercial vendors such as
Matlab and SAS. Special-purpose libraries in
Matlab are known as toolboxes. These toolboxes
define in Matlab’s m-files the genetic compo-
nents such as fitness functions, selection op-
erators, and crossover and mutation operators.

In the m-files, functions are defined taking
advantage of Matlab’s powerful language and
basic types such as vectors and matrices. The
main advantage of Matlab-based tools is the
integration with the development environment,
and the numerical and graphical power pro-
vided by the Matlab core engine and enhancing
toolboxes. The commercial tools have a more
complete set of built-in options, including mul-
tiple populations, migration and reinsertion op-
erators, and multi-objective ranking of objec-
tive values. Some of the commercial Matlab
toolboxes available are GEATbx (Pohlheim,
2005) and GADS (Mathworks, 2005). On the
other hand, there are also publicly available
toolboxes such as GPLAB (Silva, 2005), GAOT
(Houck, Joines, & Kay, 1995), and GATbx
(Chipperfield & Fleming, 1995). Another com-
mercial vendor, the SAS Institute, released
PROC GA, an experimental procedure inte-
grated to the SAS system (SAS Institute, 2003).

Genetic algorithm tools are also available
for Microsoft Excel. Some examples are the
commercial tools GeneHunter (Ward Systems
Group, 2003) and Evolver (Palisade Corp.,
2005). The model and the objective function are
specified by referencing specific cells in the
worksheet. Both tools have options to redefine
some components by means of Visual Basic
programming or dynamic linked libraries
(DLLs). These tools can also be accessed from
other programs through their companion DLLs.

The Java Programming Language has had a
fast penetration in the software and hardware
market over the last decade. Some Java-based
tools for genetic algorithms have been imple-
mented. These packages follow many of the
principles of the previously mentioned tools for
C++. Two of these implementations are GGAT
(Derderian, 2002) and JGAP (Rotstan &
Meffert, 2005).

GGAT is a tool developed in Java with the
philosophy of providing an open specification
that allows users to create new components

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/object-oriented-framework-rapid-genetic/21155

Related Content

Schematic Classification Model of Green Computing Approaches
Nishtha Kesswaniand Shelendra Kumar Jain (2017). Nature-Inspired Computing: Concepts,

Methodologies, Tools, and Applications (pp. 1643-1650).

www.irma-international.org/chapter/schematic-classification-model-of-green-computing-approaches/161087

AGE-P: An Evolutionary Platform for the Self-Organization of Smart-Appliance Ensembles
Ralf Salomonand Stefan Goldmann (2010). Nature-Inspired Informatics for Intelligent Applications and

Knowledge Discovery: Implications in Business, Science, and Engineering (pp. 182-203).

www.irma-international.org/chapter/age-evolutionary-platform-self-organization/36316

Visualizing Neuroscience Through AI: A Systematic Review
Roohi Sille, Akshita Kapoor, Tanupriya Choudhury, Hussain Falih Mahdiand Madhu Khurana (2023).

Exploring Future Opportunities of Brain-Inspired Artificial Intelligence (pp. 15-27).

www.irma-international.org/chapter/visualizing-neuroscience-through-ai/320607

Prediction of International Stock Markets Based on Hybrid Intelligent Systems
Salim Lahmiri (2017). Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications (pp.

1651-1667).

www.irma-international.org/chapter/prediction-of-international-stock-markets-based-on-hybrid-intelligent-systems/161088

The Worst-Case Stabilization Time of a Self-Stabilizing Algorithm under the Weakly Fair

Daemon Model
Tetz C. Huang, Ji-Cherng Lin, Chih-Yuan Chenand Cheng-Pin Wang (2010). International Journal of

Artificial Life Research (pp. 45-52).

www.irma-international.org/article/worst-case-stabilization-time-self/46028

http://www.igi-global.com/chapter/object-oriented-framework-rapid-genetic/21155
http://www.irma-international.org/chapter/schematic-classification-model-of-green-computing-approaches/161087
http://www.irma-international.org/chapter/age-evolutionary-platform-self-organization/36316
http://www.irma-international.org/chapter/visualizing-neuroscience-through-ai/320607
http://www.irma-international.org/chapter/prediction-of-international-stock-markets-based-on-hybrid-intelligent-systems/161088
http://www.irma-international.org/article/worst-case-stabilization-time-self/46028

