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ABSTRACT

An informal analysis is provided for the basic concepts associated with multi-objective
optimization and the notion of Pareto-optimality, particularly in the context of genetic
algorithms. A number of evolutionary algorithms developed for this purpose are also briefly
introduced, and finally, a number of paradigm examples are presented from the materials and
manufacturing sectors, where multi-objective genetic algorithms have been successfully
utilized in the recent past.

INTRODUCTION

Why Pareto-Optimality
and What it is

Making decisions based upon a single criterion
is increasingly becoming a difficult task in the
complex scenario of design and manufacturing,
as we encounter it today. More than one con-
dition routinely affects the complex industrial
processes, both at the design and the manufac-
turing stage. Several criteria that need to be
satisfied simultaneously often become conflict-
ing, rendering the search for an absolute and
unique optimum in many cases as nearly impos-

sible. I will further elaborate this point using the
schematic diagram shown in Figure 1, where a
total of six functions (I to VI) are shown
schematically and vertical lines drawn through
the points A to D would determine some unique
combinations, either in the function pairs I and
II or V and VI. Now suppose that using these
functions we want to accomplish any of the
following sets of tasks:

a. Minimize I and at the same time Maximize II
b. Minimize (or Maximize) III and at the

same time Minimize (or Maximize) IV
c. Minimize V and at the same time Minimize

VI
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The point ‘A’ marked in Figure 1 is perhaps
an appropriate choice for the task ‘a’,1 and the
task ‘b’ cannot be performed meaningfully, as
the functions III and IV exist in the different
regimes of the variable space. A close inspec-
tion of the functions V and VI will however
reveal that an obvious and unique choice is not
possible in case of task ‘c’. The three points in
B, C, and D marked onto functions V and VI
lead to the scenario shown in Table 1.

If we use the information provided in Table
1 for a simple comparison between the points B,
C, and D, we immediately realize the fact that
if any one of them is better than another in
terms of one objective, either V or VI, then it is
invariably worse in terms of the other. Such
solutions therefore represent a compromise

between various objectives and are termed as
non-dominated solutions. The other possibility
would be one solution dominating the other.
For that to happen the dominating solution
should at least be as good as the other in terms
of all the objective functions, and must fare
better in terms of at least one. This we specifi-
cally call a weak dominance, since one can,
and some people do, implement a strong domi-
nance condition which necessitates that the
dominating solutions be better in terms of all
the objective functions.2

To put it simply, Pareto-optimality, the el-
egant concept proposed by Italian mathemati-
cian Vilfredo Pareto (1848-1923), amounts to a
quest for the best possible non-dominated solu-
tions. The Pareto-front3 is a representation of
the Pareto-optimal points in the functional space
and represents the best possible compromises
or trade-offs between the objectives. Beyond
the original concepts of Pareto (1906), an enor-
mous amount of mathematical analyses have
already gone into this subject, of which a com-
prehensive treatise is provided by Miettinen
(1999); readers are referred to it.

In the arena of design and manufacturing,
the introduction of Pareto-optimality represents

Figure 1. Elaborating the concept of Pareto-optimality

Table 1. The non-dominated points

f (x)

I

IIA

V

B

C

D

VI

IVIII

x

How good in terms of V? How good in terms of VI?

B Better than C, Better than D Worse than C, Worse than D

C Worse than B, Better than D Better than B, Worse than D

D Worse than B, Worse than C Better than B, Better than C
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