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ABSTRACT

An informal analysis is provided for the basic concepts associated with multi-objective
optimization and the notion of Pareto-optimality, particularly in the context of genetic
algorithms. A number of evolutionary algorithms developed for this purpose are also briefly
introduced, and finally, a number of paradigm examples are presented from the materials and
manufacturing sectors, where multi-objective genetic algorithms have been successfully

utilized in the recent past.

INTRODUCTION

Why Pareto-Optimality
and What itis

M aking decisions based upon asingle criterion
isincreasingly becoming a difficult task in the
complex scenario of designand manufacturing,
as we encounter it today. More than one con-
dition routindy affects the complex industrial
processes, both at the design and the manufac-
turing stage. Several criteria that need to be
satisfied simultaneously often become conflict-
ing, rendering the search for an absolute and
unigueoptimumin many cases as nearly impos-

sible. 1 will further elaboratethispoint usingthe
schematic diagram shown in Figure 1, wherea
total of six functions (I to VI) are shown
schematically and vertical lines drawn through
the points A to D would determine some unique
combinations, either in thefunction pairs| and
Il or V and V1. Now suppose that using these
functions we want to accomplish any of the
following sets of tasks:

a. Minimizel and at the sametimeMaximizell

b. Minimize (or Maximize) Il and at the
same time Minimize (or Maximize) 1V

c. MinimizeV andat thesametimeMinimize
VI
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Figure 1. Elaborating the concept of Pareto-optimality
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Thepoint ‘A" marked in Figure 1 is perhaps
an appropriate choicefor the task ‘a’,! and the
task ‘b’ cannot be performed meaningfully, as
the functions 111 and IV exist in the different
regimes of the variable space. A close inspec-
tion of the functions V and VI will however
reveal that an obvious and unique choiceis not
possible in case of task ‘c’. Thethree pointsin
B, C, and D marked onto functions V and VI
lead to the scenario shown in Table 1.

If weusetheinformation provided in Table
1 for a simplecomparison betweenthepoints B,
C, and D, weimmediately realize the fact that
if any one of them is better than another in
termsof oneobjective, either V or VI, thenitis
invariably worse in terms of the other. Such
solutions therefore represent a compromise

Table 1. The non-dominated points

How good in terms of V? How good in terms of VI?
B Better than C, Better thanD  Worse than C, Worse than D
C Worsethan B, Better than D Better than B, Worse than D

D Worsethan B, Worsethan C Better than B, Better than C
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between various objectives and are termed as
non-dominated solutions. Theother possibility
would be one solution dominating the other.
For that to happen the dominating solution
should at least be as good as the other in terms
of all the objective functions, and must fare
better in terms of at |least one. This we specifi-
cally call a weak dominance, since one can,
and some people do, implement a strong domi-
nance condition which necessitates that the
dominating solutions be better in terms of all
the objective functions.?

To put it simply, Pareto-optimality, the -
egant concept proposed by Italian mathemati-
cian Vilfredo Pareto (1848-1923), amountsto a
guest for the best possible non-dominated solu-
tions. The Pareto-front® is a representation of
thePareto-optimal pointsinthefunctional space
and represents the best possible compromises
or trade-offs between the objectives. Beyond
theoriginal concepts of Pareto (1906), an enor-
mous amount of mathematical analyses have
already gone into this subject, of which a com-
prehensive treatise is provided by Miettinen
(1999); readers are referred to it.

In the arena of design and manufacturing,
theintroduction of Pareto-optimality represents
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