
 59

��������

/������� ��������

Pierre Collet
Université du Littoral Côte d’Opale, France

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

ABSTRACT

The aim of genetic programming is to evolve programs or functions (symbolic regression)
thanks to artificial evolution. This technique is now mature and can routinely yield results on
par with (or even better than) human intelligence. This chapter sums up the basics of genetic
programming and outlines the main subtleties one should be aware of in order to obtain good
results.

INTRODUCTION

Genetic programming (GP) is still rather un-
known, even though it has recently obtained
spectacular results: John Koza showed in his
latest book (Koza et al., 2003) that genetic
programming can routinely produce solutions
that are competitive with human intelligence,
without requiring one to be an expert in the
domain of the problem to be solved.

A Bit of History

The idea of evolving computer programs dates
back to the dawn of computing. Back in 1958,
Friedberg made several attempts to have a
computer program itself (Friedberg, 1958;
Friedberg, Dunham, & North, 1958) using what
would now be called mutations. He started with
a “population” of random programs, and modi-

fied the contents stochastically, trying to im-
prove the results.

Later on, Smith (1980), who was working on
learning classifier systems, introduced small
programs in the rules he was evolving. How-
ever, the modern vision of genetic program-
ming starts with a small but seminal paper by
Cramer (1985), who uses a tree-like variable
size structure to represent a program. Pro-
grams are not written in LISP (as suggested by
Koza later on) but in TB (a tree version of the
JB language). Along with mutation, Cramer
also uses a standard subtree crossover, intro-
duces as well a mono-parental crossover, and
insists on the necessity to create closed genetic
operators. Above all, he evolves his population
of programs with an evolutionary engine.

All the seeds were therefore present for the
domain to grow, but as for Manderick and
Moyson and Ant Colony Optimization (cf. Chap-

60

Genetic Programming

ter III), Cramer somehow failed to promote his
work enough, and nothing major happened in
this domain for several years. In fact, another
major problem was that computers of this era
were not powerful enough to obtain really good
results with GP.

Genetic Programming à la Koza

By the beginning of the 1990s, genetic pro-
gramming made its comeback thanks to Koza
(1989, 1992, 1994; Koza et al., 1999, 2003) who
put in a lot of energy (and computer power) to
develop the ideas introduced by Cramer and his
predecessors.

Genetic programming is nothing else than
standard evolutionary techniques (described in
Chapter IV) applied to individuals that implement
programs. Standard evolutionary algorithms evolve
potential solutions to a problem to be optimized.
Most of the time, EA individuals are made of a list
of parameters that are passed over to a “fitness
function” used to evaluate the individual.

In genetic programming, an individual is a
program, or more often a function. The main
(and only?) difference with EAs is that GP
executes the individuals to evaluate them.
Another difference is that in most of the cases,
GP uses variable length individuals where stan-
dard EAs use fixed size individuals.

This chapter presents standard genetic pro-
gramming à la Koza, including hints, sugges-
tions, and pointers to state-of-the-art papers
that will hopefully allow newcomers to obtain
good results with this delicate technique.

STANDARD GENETIC
PROGRAMMING

Representation of an Individual

As is the case in EAs, using the good represen-
tation for a particular problem is quite essential,

because the chosen representation more or less
determines the search space in which the indi-
viduals will evolve: it will be very difficult to
obtain an iterative program with a representa-
tion that does not allow loops or recursive calls.
On the contrary, if everything is allowed, the
search space may be so large that finding
compiling programs that stop correctly or sim-
ply do not hang will be already very difficult.

The individual representation described be-
low corresponds to the most common one¾that
is, the representation that Koza used for the
development of what is now standard genetic
programming. In order to reduce the search
space and find an individual structure adapted to
the representation of a program, Koza naturally
chose a functional language for several reasons:

• Syntactically speaking, with a purely func-
tional representation, there is no need to
define a grammar recognizing valid pro-
grams, provided the set of functions is
closed.

• Functional languages limit side effects,
which, as a side effect, minimizes bug
occurrence.

• Above all, a functional program can very
easily be implemented as a tree: nodes are
operators that have as many children that
they need operands and that return to their
parent the result of their evaluation.

For instance, a function calculating a factorial:

Function fact(n) {
If n=0 return 1
Else return fact(n-1)

}

can be simply represented by the tree in
Figure 1.

Moreover, of all different possible repre-
sentations, a tree structure can naturally imple-
ment variable size individuals on which cross-

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/genetic-programming/21120

Related Content

Control of Dynamic Noise in Transcendental Julia and Mandelbrot Sets by Superior Iteration

Method
Ketan Jhaand Mamta Rani (2018). International Journal of Natural Computing Research (pp. 48-59).

www.irma-international.org/article/control-of-dynamic-noise-in-transcendental-julia-and-mandelbrot-sets-by-superior-

iteration-method/209450

Nature-Inspired Algorithms for Problem Solving: A Deep Dive Into Computational Intelligence
Dharmesh Dhabliya, Ankur Gupta, Sukhvinder Singh Dari, Ritika Dhabliya, Anishkumar Dhablia, Rohit

Anandand Nitin N. Sakhare (2024). Bio-Inspired Intelligence for Smart Decision-Making (pp. 189-211).

www.irma-international.org/chapter/nature-inspired-algorithms-for-problem-solving/347322

Non Linear Dynamical Systems and Chaos Synchronization
Ayub Khanand Prempal Singh (2010). International Journal of Artificial Life Research (pp. 43-57).

www.irma-international.org/article/non-linear-dynamical-systems-chaos/44670

The Universal Constructor
Eleonora Bilottaand Pietro Pantano (2010). Cellular Automata and Complex Systems: Methods for

Modeling Biological Phenomena (pp. 362-378).

www.irma-international.org/chapter/universal-constructor/43226

Topic Modeling as a Tool to Gauge Political Sentiments from Twitter Feeds
Debabrata Sarddar, Raktim Kumar Dey, Rajesh Boseand Sandip Roy (2020). International Journal of

Natural Computing Research (pp. 14-35).

www.irma-international.org/article/topic-modeling-as-a-tool-to-gauge-political-sentiments-from-twitter-feeds/250254

http://www.igi-global.com/chapter/genetic-programming/21120
http://www.irma-international.org/article/control-of-dynamic-noise-in-transcendental-julia-and-mandelbrot-sets-by-superior-iteration-method/209450
http://www.irma-international.org/article/control-of-dynamic-noise-in-transcendental-julia-and-mandelbrot-sets-by-superior-iteration-method/209450
http://www.irma-international.org/chapter/nature-inspired-algorithms-for-problem-solving/347322
http://www.irma-international.org/article/non-linear-dynamical-systems-chaos/44670
http://www.irma-international.org/chapter/universal-constructor/43226
http://www.irma-international.org/article/topic-modeling-as-a-tool-to-gauge-political-sentiments-from-twitter-feeds/250254

