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ABSTRACT

When looking for a solution, deterministic methods have the enormous advantage that they do
find global optima. Unfortunately, they are very CPU intensive, and are useless on untractable
NP-hard problems that would require thousands of years for cutting-edge computers to
explore. In order to get a result, one needs to revert to stochastic algorithms that sample the
search space without exploring it thoroughly. Such algorithms can find very good results,
without any guarantee that the global optimum has been reached; but there is often no other
choice than using them. This chapter is a short introduction to the main methods used in
stochastic optimization.

INTRODUCTION

The never-ending search for productivity has
made optimization a core concern for engi-
neers. Quick process, low-energy consump-
tion, short and economical supply chains are
now key success factors.

Given a space Ω of individual solutions
ω∈Rn and an objective function f, f(ω)→R,
optimizing is the process of finding the solution
ω∗ which minimizes (maximizes) f.

For hard problems, optimization is often
described as a walk in a fitness landscape.

First proposed by biologist S. Wright (1932),
fitness landscapes aimed at representing the
fitness of a living organism according to the
genotype space. While optimizing, fitness mea-
sures the quality of a solution, and fitness
landscapes plot solutions and corresponding
goodness (fitness). If one wishes to optimize
the function 1 0x + = , then depending on the
choice of the error measure, fitness can for
example be defined as | ( 1) |x− − +  or as
1 | ( 1) |x/ − + . The optimization process then tries
to find the peak of the fitness landscape (see
Figure 1(a)).
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Stochastic Optimization Algorithms

This example is trivial and the optimum is
easy to find. Real problems are often multimodal,
meaning that their fitness landscapes contain
several local optima (i.e., points whose neigh-
bors all have a lower fitness; see Figure 1(b)).
This is particularly true when variables interact
with one another (epistasis).

Usual analytical methods, like gradient de-
scent, are often unable to find a global optimum,
since they are unable to deal with such func-
tions. Moreover, companies mostly deal with
combinatorial problems like quadratic assign-
ment, timetabling, or scheduling problems. These
problems using discrete states generate non-
continuous objective functions that are un-
reachable through analytical methods.

Stochastic optimization algorithms were
designed to deal with highly complex optimiza-
tion problems. This chapter will first introduce
the notion of complexity and then present the
main stochastic optimization algorithms.

NP-Complete Problems and
Combinatorial Explosion

In December, Santa Claus must prepare the
millions of presents he has to distribute for
Christmas. Since the capacity of his sleigh is
finite, and he prefers to minimize the number of
runs, he would like to find the best way to
organize the packs. Despite the apparent trivi-

ality of the task, Santa Claus is facing a very
hard problem. Its simplest formulation is the
one-dimensional bin packing problem. Given
a list  1 2( )nL a a … a= , , ,  of i tems  with
sizes 0 ( ) 1is a< ≤ , what is the minimum number
m  of unit-capacity bins B

j
 such that

( ) 1 1
i j

ia B
s a j m

∈
≤ , ≤ ≤∑ ? This problem is known

to be NP-hard (Coffman, Garey, & Johnson,
1996).

Various forms of the bin packing problem
are very common. The transportation industry
must optimize truck packing given weight limits,
the press has to organize advertisements mini-
mizing the space, and the sheet metal industry
must solve the cutting-stock problem (how to
minimize waste when cutting a metal sheet).

Such problems are very tough because we
do not know how to build algorithms that can
solve them in polynomial-time; they are said to
be intractable problems. The only algorithms
we know for them need an exponential-time.
Table 1 illustrates the evolution of time algo-

Figure 1. (a) Fitness landscapes for x + 1 = 0.
(b) A multimodal fitness landscape.

 

Table 1. Polynomial vs. non-polynomial
functions complexity growth

Considering 109 operations per second, evolution

of the algorithm time according to its complexity.

TSP stands for Traveling Salesman Problem, with

complexity ( 1)
2

N − !  for N towns (see following sections).

O(N)  N=17  N=18  N=19  N=20  

N   17 910−× s  18 910−× s 19 910−× s 20 910−× s 

2N   289 910−× s  324 910−× s  361 910−× s  400 910−× s 

5N   1.4 310−× s 1.8 310−× s 2.4 310−× s 3.2 310−× s 

2N   131 610−× s 262 610−× s  524 610−× s 1 310−× s 

5N   12.7 mn 1 h 5.29 h 26.4h 

TSP  2.9 h 2 days 37 days 2 years ! 

N!   4 days  74 days  4 years 77 years ! 

(a) (b)
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