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ABSTRACT

Social insects—ants, bees, wasps, and termites—and the distributed problem-solving, multi-
agent paradigm that they represent, have been enormously influential in nature-inspired
computing. Insect societies have been a source of inspiration and amazement for centuries,
but only in the last 25 years or so have we made significant inroads to both understanding just
how various collective phenomena arise and are governed, and how we can use the lessons
and insights garnered from sociobiological research for more practical purposes. In this
chapter, we provide a very brief history of the field, detailing some of the key phenomena,
mechanisms, and lessons learned, and a quick tour of some of the different types of
applications to which this knowledge has been put to use, including but certainly not limited
to distributed problem solving, task allocation, search, and collective robotics.

ARTIFICIAL LIFE

Insect societies owe their illustriousness, in
part, to their ubiquity (they are found on every
continent except Antarctica) and that almost all
of us, at one time or another, has had some food
item discovered by a single foraging ant, and
only a few moments later we witness the arrival
of a whole group—then a trail—of nestmates,
ready to carry off the spoils. Move the food,
and the trail quickly adapts to the new location.
More concretely, provide a colony of certain
ant species with a choice of two food sources,
say a weak sugar solution and a strong sugar

solution, and the colony will select a trail to the
better source, moreover, without a single ant
ever visiting both food sources (Camazine et
al., 2001, and references therein). Watch a trail
over time and it can become straighter, and thus
more efficient, again without any individual
having a global view of the situation (Bruckstein,
1993; see Shao & Hristu-Varsakelis, 2005, for
an application). Peer inside a colony and you
will find many different tasks being performed
concurrently (cleaning, feeding larvae, pro-
cessing food, etc.), each task with the appropri-
ate number of individuals to meet that task’s
demands. Remove some of the individuals tack-
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ling one of the tasks, and the allocation of
workers across the colony will shift to redress
the balance (Wilson, 1984). Just how can a
colony of these tiny creatures, with necessarily
small brains, achieve such amazing, adaptive
collective behavior?

People have long pondered this very ques-
tion, perhaps summed up best by Maeterlink
(1927): “What is it that governs here? What is
it that issues orders, foresees the future, elabo-
rates plans and preserves equilibrium, adminis-
ters, and condemns to death?” Many have
assumed that it is the queen herself that directs
the colony’s activities (and in some cases, that
it is the relatively inactive ant soldiers, with their
larger heads, who direct traffic on trails) (Step,
1924; Ewers, 1927). However, this would re-
quire both a sophisticated communication sys-
tem and a remarkable cognitive ability on the
part of the queen to collate all the necessary
information, process it, devise some plan of
action, and pass those orders back to the work-
ers. The reality is that while there exists some
degree of queen control, especially in very
small insect societies, this mostly relates to
reproductive rights, the queen maintaining her
reign. Quotidian tasks such as foraging, clean-
ing, and nest construction are regulated in a
very distributed manner relying on direct indi-
vidual-to-individual interactions or indirect
“stigmergic” interactions (Grassé, 1959) medi-
ated through the environment (e.g., ants that
lay trail pheromone that influences the foraging
behavior of other ants) (e.g., Hölldobler &
Wilson, 1990; Camazine et al., 2001).

While careful methodical experimentation
and detailed mathematical models have helped
elucidate some of the proximate mechanisms at
work, the popularization of insect societies as a
powerful metaphor and new paradigm among
the artificial intelligence community owes much
to the field of artificial life. (Although we should
not forget Hofstadter’s 1980 highly influential

and Pulitzer prize winning book, Gödel, Escher
and Bach, in which, in one chapter, “Ant
Fugue,” he uses an ant colony as a metaphor for
the mind.) A-life, a field of artificial biology
(usually) using computer simulation to model
“life as it is,” to explain extant biological phe-
nomena, or “life as it could be,” to explore life’s
possibilities, began in the 1980s. Of particular
relevance is one of the seminal models in the
field and one of the earliest models of ants.
Langton’s virtual ants or “vants” (Langton,
1986) are absurdly simple: there is a grid of cells
that may be black or white and one or more
ants; an ant that lands on a black cell turns the
cell white, turns right and moves forward one
unit; an ant that lands on a white cell turns the
cell black, turns left and moves forward one
unit. Despite the apparent triviality of this sys-
tem, what arises is surprising: ants may mill
around in a seemingly chaotic fashion, but in
certain situations may interact with each other,
mediated through the color of the cells, to form
“highways” (see Figure 1) and move the ants in
a coordinate fashion across the grid.

It is computer experiments such as these
that fired up the imaginations of many re-
searchers and triggered a slew of ant-based
simulations that formed the basis for this sub-
field of nature-inspired computing. This ap-
proach of abstracting such systems almost to
the point of absurdity, and yet still retain incred-
ibly complex and surprising behavior, seems to
have been key in eradicating the mysticism that
surrounds many complex systems. Here was a
trivial, deterministic system in which all local
rules and behavior are known, and yet the long-
term collective behavior was in most cases
unpredictable from a given set of initial condi-
tions. (In fact, vants is a four-state, two-dimen-
sional Turing machine; Weisstein, 2005.) Now
one possessed a mini-world in which one could
explore initial conditions and other parameters,
and by use of careful experimentations stood a
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