
 ���

Chapter XXV
Hibernate:

A Full Object Relational Mapping
Service

Allan M. Hart
Minnesota State University, Mankato, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

This chapter presents a brief overview of the object/relational mapping service known as Hibernate. Based
on work provided in the book Java Persistence with Hibernate, it is argued that the paradigm mismatch
problem consists of five problems: the problem of granularity, the problem of subtypes, the problem of
identity, the problem of associations, and the problem of data navigation. It is argued that Hibernate, if
it is to be considered a successful object/relational mapping service, must solve the paradigm mismatch
problem and, hence, each of the five problems noted above. A simplified version of an order entry system
is presented together with the mapping files required to store persistent objects to a database. Examples
are given for one-to-one, one-to-many, and many-to-many mappings. The distinction between value and
entity types is explained and the mapping technique required for value types is introduced into the order
entry system application. The n+1 selects problem is explained and a strategy for solving that problem
using Hibernate’s support for lazy, batch, and eager fetching strategies is discussed.

INtrODUctION

The purpose of this chapter is to provide the reader
with an introduction to Hibernate. Hibernate, as
described at its Web site, is “a powerful, high per-
formance object/relational persistencee and query
service” (Hibernate, 2008).

Hibernate is one among a number of so-called
persistence frameworks. Other notables include
TopLink, iBATIS, and Java data objects (JDO)
(Oracle TopLink, 2008; IBATis, 2008; JDO, 2008).
The basic responsibility of any persistence frame-

work is to manage persistent data, that is, data that
needs to be saved to persistent storage (usually a
relational database) from one invocation of the
application to the next. Not all objects created by
a given application constitute persistent data but
many of them do. For example, in an ecommerce
application, information regarding the customer’s
name, address, and credit card information as well
as the particular products the customer has ordered
(and the quantity of each), constitutes data that needs
to be saved to persistent storage.

���

Hibernate

Persistence frameworks can generally be divided
into those that are based on an approach known as
object/relational mapping (ORM) and those that
are not. Both Hibernate and TopLink, for example,
are correctly classified as ORM services. iBATIS,
on the other hand, though often listed as an ORM
service, is, strictly speaking, not an ORM service
at all, but rather a data mapping service. With an
ORM service like Hibernate, what are mapped,
very roughly speaking, are classes to tables. In-
stances of classes become rows in a database table
and associations between classes become foreign
key constraints between database tables. What are
mapped with iBATIS’s data mapping services, on
the other hand, are not tables to classes, but rather
the parameters and results of SQL statements to
classes.1

The need for ORM services grew out of the
realization over the last several decades that a
paradigm mismatch problem exists between the
world of object-oriented programming languages
and relational databases. In this chapter we will
explore some of the details of this problem as well
as the ways in which an ORM service like Hibernate
attempts to solve the problem.

bAcKGrOUND

The evolution of programming languages over the
last 50 years has seen a large growth not only in
the number of different programming languages but
also in the number of different types of programming
languages. During the 60s procedural languages
such as FORTRAN, BASIC, and Pascal were the
rage. While object-oriented programming (OOP)
was in its infancy in the 60s, its first implementa-
tion language, Smalltalk, appeared. During the 70s
and 80s SmallTalk continued to evolve and newer
OOP languages such as Object Pascal and C++
appeared. The appearance of Java during the mid
90s solidified OOP’s position as the predominant
programming language paradigm. During this same
period, changes in the database world were also

afoot. Edgar F. Codd’s seminal paper “A Relational
Model of Data for Large Shared Data Banks” was
published in 1970. This paper triggered much work
in the 70s and, during this time, implementations of
the relational model began to appear. Soon, thereaf-
ter, relational databases had largely replaced their
hierarchical and network predecessors.

As the development of OOP languages and re-
lational database management systems proceeded,
it soon became clear that there was a paradigm
mismatch problem.2 The details of the problem will
be presented in the next section. For now, suffice it
to say that there were primarily two responses to
this problem. Some have argued that the relational
model should be abandoned and that object-ori-
ented databases should be embraced. Others have
argued that relational databases should instead be
expanded to include at least some of the features
found in object-oriented programming languages,
for example, user-defined types and inheritance.
This bifurcation in the historical road down which
database development has gone, constitutes, one
might say, a fork in that road. During the 90s, one
saw much development being done in the area of
pure object-oriented databases. However, while this
work deserves much praise, the effort did not bear
much fruit. While pure object-oriented database
management systems were developed, none of them
caught on in the marketplace and much of that ef-
fort has now been abandoned. During roughly the
same time period, much effort was also expended
toward the other fork. The notion of a user defined
type (UDT) was brought into the database world
with implementations being provided for both
Oracle and SQL server. While this has served to
alleviate the paradigm mismatch problem to some
degree (at least for those platforms), it has not suc-
cessfully overcome the problem in all of its detail.
Moreover, the solutions provided are not portable
among those platforms.

33 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/hibernate-full-object-relational-mapping/21082

Related Content

Performance-Aware Approach for Software Risk Management Using Random Forest Algorithm
Alankrita Aggarwal, Kanwalvir Singh Dhindsaand P. K. Suri (2021). International Journal of Software

Innovation (pp. 12-19).

www.irma-international.org/article/performance-aware-approach-for-software-risk-management-using-random-forest-

algorithm/266279

EMC - A Modeling Method for Developing Web-based Applications
Peter Rittgen (2002). Optimal Information Modeling Techniques (pp. 207-220).

www.irma-international.org/chapter/emc-modeling-method-developing-web/27838

IDA: An Intelligent Document Analysis System for Evaluating Corporate Governance Practices

Based on SEC Required Filings
Ying Zhengand Harry Zhou (2015). International Journal of Software Innovation (pp. 39-51).

www.irma-international.org/article/ida/122792

Cyber Physical Control Systems
 (2015). Challenges, Opportunities, and Dimensions of Cyber-Physical Systems (pp. 263-285).

www.irma-international.org/chapter/cyber-physical-control-systems/121260

An Empirical Investigation on Vulnerability for Software Companies
Jianping Peng, Guoying Zhangand Chun-Hung Chiu (2022). International Journal of Systems and Software

Security and Protection (pp. 1-15).

www.irma-international.org/article/an-empirical-investigation-on-vulnerability-for-software-companies/304894

http://www.igi-global.com/chapter/hibernate-full-object-relational-mapping/21082
http://www.igi-global.com/chapter/hibernate-full-object-relational-mapping/21082
http://www.irma-international.org/article/performance-aware-approach-for-software-risk-management-using-random-forest-algorithm/266279
http://www.irma-international.org/article/performance-aware-approach-for-software-risk-management-using-random-forest-algorithm/266279
http://www.irma-international.org/chapter/emc-modeling-method-developing-web/27838
http://www.irma-international.org/article/ida/122792
http://www.irma-international.org/chapter/cyber-physical-control-systems/121260
http://www.irma-international.org/article/an-empirical-investigation-on-vulnerability-for-software-companies/304894

