
  ���

Chapter XII
Notes on the Emerging Science 

of Software Evolution
Ladislav Samuelis

Technical University of Kosice, Slovakia

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

This chapter introduces the irreducibility principle within the context of computer science and software 
engineering disciplines. It argues that the evolution, analysis, and design of the application software, which 
represent higher level concepts, cannot be deduced from the underlying concepts, which are valid on a 
lower level of abstractions. We analyze two specific sweeping statements often observed in the software 
engineering community and highlight the presence of the reductionism approach being treated already in 
the philosophy. We draw an analogy between the irreducibility principle and this approach. Furthermore, 
we hope that deep understanding of the reductionism approach will assist in the correct application of 
software design principles.

INtrODUctION

Dealing with continuously increasing software 
complexity raises huge maintenance costs and 
rapidly slows down implementation. One of the 
main reasons why software is becoming more and 
more complex is its flexibility, which is driven by 
changing business rules or other volatile require-
ments. We note that this flexibility is rooted in the 
generality of the programmable John von Neumann 
machine. Due to these inevitable facts, which influ-
ence software development, the software systems’ 
complexity increases continuously. Recently, soft-

ware maintenance represents 45% of software cost 
(Cartwright & Shepperd, 2000). This phenomenon 
motivates researchers and practitioners to find 
theories and practices in order to decrease the 
maintenance cost and keep the software develop-
ment within reasonable managerial and financial 
constraints. The notion of software evolution (which 
is closely related and often interchanged with the 
term maintenance) was already introduced in the 
middle of the seventies when Lehman and Belady 
examined the growth and the evolution of a number 
of large software systems (Lehman & Belady, 1976). 
They proposed eight laws, which are often cited in 



���  

Notes on the Emerging Science of Software Evolution

software engineering literature and are considered 
as the first research results gained by observation 
during the evolution of large software systems. 

The term software evolution has emerged in 
many research papers with roots both in computer 
science and software engineering disciplines (e.g., 
Bennett & Rajlich, 2000). Nowadays, it has become 
an accepted research area. In spite of the fact that 
the science of software evolution is in its infancy, 
formal theories are being developed and empirical 
observations are compared to the predicted results. 
Lehman’s second law states the following: “an evolv-
ing system increases its complexity unless work 
is done to reduce it” (Lehman, 1980). Due to the 
consequences of this law and due to the increased 
computing power, the research in software and 
related areas is being accelerated and very often 
causes confusion and inconsistency in the used 
terminology. 

This chapter aims to discuss the observations 
concerning evolution within the context of computer 
science and software engineering. In particular, 
it analyzes frictions in two sweeping statements, 
which we observe reading research papers in com-
puter science, software engineering, and compares 
them with reality. We will analyze them from the 
reductionism point of view and argue that a design 
created at a higher level—its algorithm—is specific 
and in this sense it cannot be deduced from the laws, 
which are valid on more fundamental levels. We 
introduce a new term, the irreducibility principle, 
which is not mentioned explicitly in the expert 
literature within the context of computer science 
and software engineering (to the best of our knowl-
edge). Finally, we summarize the ideas and possible 
implications from a wider perspective.

sOME HIstOrIcAL NOtEs ON tHE 
sOFtWArE EVOLUtION

Research on software evolution is discussed in many 
software related disciplines. Topics of software 
evolution are subjects of many conferences and 

workshops, too. In the following paragraphs, we will 
briefly characterize the scene in order to highlight 
the interpretation of the notion of evolution in the 
history of software technology.

The notions of  program synthesis or automated 
program construction are the first forerunners of 
the evolution abstraction in software engineering. 
Papers devoted to these topics could be found in, for 
example, the research field of automated program 
synthesis. Practical results achieved in the field 
of programming by examples are summed up, for 
example, in the book edited by Lieberman (2001). 
The general principle of these approaches is based 
on the induction principle, which is analyzed in 
the work of Samuelis and Szabó in more details 
(Samuelis & Szabó, 2006). The term evolution was 
a synonym for automation of the program construc-
tion and for the discovery of reusable code—that 
is, searching for loops.

Later on, when programming technologies 
matured and program libraries and components 
were established into practice, the research field 
of pattern reuse (Fowler, 2000) and engineering 
component-based systems (Angster, 2004) drove its 
attention into theory and practice. In other words, 
slight shift to component-based aspect is observed 
in the course of the construction of programs. We 
may say that the widely used term of customization 
was stressed and this term also merged later with 
the notion of evolution. Of course, this shift was 
heavily supported by the object-oriented program-
ming languages, which penetrated into the industrial 
practice during the 80s in the last century.

Since it was a necessity to maintain large and 
more complex legacy systems, the topic of program 
comprehension came into focus and became more 
and more important. Program comprehension is an 
activity drafted in the paper of Rajlich and Wilde 
as: Program comprehension is an essential part of 
software evolution and software maintenance: soft-
ware that is not comprehended cannot be changed. 
The fields of software documentation, visualization, 
program design, and so forth, are driven by the 
need for program comprehension. Program com-



 

 

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/notes-emerging-science-software-evolution/21069

Related Content

Network Security Monitoring by Combining Semi-Supervised Learning and Active Learning
Yun Pan (2022). International Journal of Information System Modeling and Design (pp. 1-9).

www.irma-international.org/article/network-security-monitoring-by-combining-semi-supervised-learning-and-active-

learning/313578

E-CARe: A Process for Engineering Ubiquitous Information Systems
Ansem Ben Cheikh, Agnès Front, Jean-Pierre Giraudinand Stéphane Coulondre (2013). International Journal

of Information System Modeling and Design (pp. 1-31).

www.irma-international.org/article/e-care/80194

Ambidexterity, Knowledge Management, and Innovation in Technology Development Zones: The

Case of Turkey
ükran Sirkintiolu Yildirimand Özlem Atay (2022). Emerging Technologies for Innovation Management in the

Software Industry (pp. 115-133).

www.irma-international.org/chapter/ambidexterity-knowledge-management-and-innovation-in-technology-development-

zones/304540

Data Modeling and Functional Modeling: Examining the Preferred Order of Using UML Class

Diagrams and Use Cases
Peretz Shoval, Mark Lastand Avihai Yampolsky (2009). Innovations in Information Systems Modeling: Methods

and Best Practices  (pp. 122-142).

www.irma-international.org/chapter/data-modeling-functional-modeling/23787

Examples of Multirate Filter Banks
Ljiljana Milic (2009). Multirate Filtering for Digital Signal Processing: MATLAB Applications  (pp. 347-384).

www.irma-international.org/chapter/examples-multirate-filter-banks/27221

http://www.igi-global.com/chapter/notes-emerging-science-software-evolution/21069
http://www.igi-global.com/chapter/notes-emerging-science-software-evolution/21069
http://www.irma-international.org/article/network-security-monitoring-by-combining-semi-supervised-learning-and-active-learning/313578
http://www.irma-international.org/article/network-security-monitoring-by-combining-semi-supervised-learning-and-active-learning/313578
http://www.irma-international.org/article/e-care/80194
http://www.irma-international.org/chapter/ambidexterity-knowledge-management-and-innovation-in-technology-development-zones/304540
http://www.irma-international.org/chapter/ambidexterity-knowledge-management-and-innovation-in-technology-development-zones/304540
http://www.irma-international.org/chapter/data-modeling-functional-modeling/23787
http://www.irma-international.org/chapter/examples-multirate-filter-banks/27221

