
���

Chapter XI
Strategies for Static Tables

Dean Kelley
Minnesota State University, Mankato, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

This chapter presents three alternatives for structuring static tables—those tables in which the collection
of keys remains unchanged and in which the FIND operation is optimized. Each alternative provides per-
formance guarantees for the FIND operation which can help those who design and/or implement systems
achieve performance guarantees of their own. The chapter provides clear and concise algorithms for
construction and/or usage and simple guidelines for choosing among the strategies. It is intended that this
presentation will help inform system design decisions. It is further intended that this chapter will assist
implementation activities for systems which make use of static tables.

INtrODUctION

System designers and implementers are frequently
required to guarantee system performance. Often,
performance depends on efficient interaction with
tables and dictionaries of data. When table opera-
tions require communication via resources whose
availability may not be guaranteed (e.g., networked
communication with a database), designers/imple-
menters may not be able to make firm guarantees
of system or system component performance.
Consequently, it may be necessary to incorporate
tables into a system rather than rely on external
support for them.

Generally, tables fall into two categories depend-
ing on the type of operations they are required to
support. Static tables are ones which, once built, do

not change. The set of keys that they contain remains
unchanged throughout their lifetime (although the
data associated with the keys may change). A dy-
namic table may change its set of keys by means of
insertion and deletion during the time that the table
is active. Both types of table support searching to
determine if a specific key is present as well as to
retrieve data associated with a key.

This chapter focuses on techniques for imple-
menting static tables. The first section presents
necessary technical background. The second sec-
tion presents a general technique for situations in
which keys can be totally ordered and searching
can be accomplished by key comparisons. The
third section extends that technique to a situation
in which the probabilities for search operations for
each key are known. The fourth section presents

 ���

Strategies for Static Tables

a technique in which, at most, a single key com-
parison is required and that comparison is only for
equality, consequently the keys do not need to be
totally ordered.

The topics of this chapter provide system de-
signers and implementers with alternatives for
static tables which can yield firm guarantees of
performance.

bAcKGrOUND

This chapter is concerned with static tables, tables
in which data are associated with keys and the set
of keys remains unchanged throughout the life of
the table. Access to a specific item of data is ac-
complished by searching for its key by means of a
FIND operation.

Table techniques are evaluated by their consump-
tion of time and space. Time is measured by the
number of key comparisons which take place during
a FIND operation. Space is measured by the size of
the structure(s) necessary to contain the keys and
additional supporting data necessary to make the
technique work. We do not include the “user” data
associated with the keys in the space cost.

Key comparisons may be for equality (“k1 equals
k2”) or order (“k1 is before k2”). The search techniques
of the second and third sections require comparisons
for order. Consequently, the comparison of any two
keys in the set of keys must yield information about
their relative order. When a relation equivalent to
“≤” holds for all elements of a set, that set is said
to be totally ordered. Thus, the techniques of the
second and third sections require that the keys be
from a totally ordered set.

The study of efficient techniques for static tables
owes much to the paper by Yao (1981). In this paper
it was shown that if the number of keys in the table
is small relative to the number of possible keys, then
the number of comparisons necessary to determine
if a particular key is present (and where it is) is
Ω(logn). That is, it requires at least a constant times
logn comparisons. Consequently, binary search in a

sorted array (the topic of the second section) is the
best approach under these circumstances.

Alternatives to array-based tables lead to tree-
like structures built with links. In the third section,
we present a specific type of binary tree structure,
the optimal binary search tree, which yields a
guarantee of the average number of key com-
parisons over all possible searches. Binary search
trees were independently discovered by a number
of people. Gilbert and Moore (1959) provided the
basis for constructing optimal binary search trees
when the probabilities of each key being searched
for are known.

Yao (1981) also observed that by allowing one
additional item to be stored, the Ω(logn) bound
can be beat and constant-time FIND performance
is possible. Typically, the additional item is the
name of a hash function. Fredman, Komlòs, and
Szemerédi (1984) showed that there is a structur-
ing technique which uses n+o(n) space and attains
O(1) time for the FIND operation. The tool of the
final section is based on the improved technique of
Czech, Havas, and Majewski (1992) and Majewski,
Wormald, Havas, and Czech (1996).

sOrtED tAbLEs

A comparison-based search technique is one in
which information about the location of a key is
obtained by comparing it with keys in the table.
Comparison-based techniques require that the
keys involved be from a totally ordered set so that
any key can be compared with any other key. It is
known (Yao, 1981) that Ω(logn) comparisons are
required for comparison-based static tables. Binary
search (presented below) attains this cost and is,
therefore, an optimal approach.

binary search in a sorted Array

A sorted array A[] can support an efficient static
table. Suppose that the key x is being searched for
in A[]. Because the array is in sorted order, com-

11 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/strategies-static-tables/21068

Related Content

Knowledge Management Initiatives in Agile Software Development: A Literature Review
Shanmuganathan Vasanthapriyan (2022). Research Anthology on Agile Software, Software Development, and

Testing (pp. 2065-2081).

www.irma-international.org/chapter/knowledge-management-initiatives-in-agile-software-development/294559

A Survey of Object-Oriented Design Quality Improvement
Juan José Olmedilla (2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp.

2646-2664).

www.irma-international.org/chapter/survey-object-oriented-design-quality/29526

Malware Analysis and Its Mitigation Tools
D. R. Janardhana, A. P. Manu, K. Shivannaand K. C. Suhas (2023). Malware Analysis and Intrusion Detection

in Cyber-Physical Systems (pp. 263-284).

www.irma-international.org/chapter/malware-analysis-and-its-mitigation-tools/331308

Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems

and Services
Kensuke Naoe, Hideyasu Sasakiand Yoshiyasu Takefuji (2012). Theoretical and Analytical Service-Focused

Systems Design and Development (pp. 106-121).

www.irma-international.org/chapter/secure-key-generation-static-visual/66795

Accurate and Language Agnostic Code Clone Detection by Measuring Edit Distance of ANTLR

Parse Tree
Sanjay B. Ankaliand Latha Parthiban (2022). International Journal of Software Innovation (pp. 1-22).

www.irma-international.org/article/accurate-and-language-agnostic-code-clone-detection-by-measuring-edit-distance-of-antlr-

parse-tree/297915

http://www.igi-global.com/chapter/strategies-static-tables/21068
http://www.igi-global.com/chapter/strategies-static-tables/21068
http://www.irma-international.org/chapter/knowledge-management-initiatives-in-agile-software-development/294559
http://www.irma-international.org/chapter/survey-object-oriented-design-quality/29526
http://www.irma-international.org/chapter/malware-analysis-and-its-mitigation-tools/331308
http://www.irma-international.org/chapter/secure-key-generation-static-visual/66795
http://www.irma-international.org/article/accurate-and-language-agnostic-code-clone-detection-by-measuring-edit-distance-of-antlr-parse-tree/297915
http://www.irma-international.org/article/accurate-and-language-agnostic-code-clone-detection-by-measuring-edit-distance-of-antlr-parse-tree/297915

