Chapter 3 Big Data and Digital Analytics #### Sumathi Doraikannan Malla Reddy Engineering College (Autonomous), India #### Prabha Selvaraj Malla Reddy Institute of Engineering and Technology, India #### **ABSTRACT** Data becomes big data when then the size of data exceeds the ability of our IT systems in terms of 3Vs (volume, velocity, and variety). When the data sets are large and complex, it becomes a great difficult task for handling such voluminous data. This chapter will provide a detailed knowledge of the major concepts and components of big data and also the transformation of big data in to business operations. Collection and storage of big data will not help out in creation of business values. Values and importance are created once when the action starts on data by performing an analysis. Hence, this chapter provides a view on various kinds of analysis that can be done with big data and also the differences between traditional analytics and big data analytics. The transformation of digital data into business values could be in terms of reports, research analyses, recommendations, predictions, and optimizations. In addition to the concept of big data, this chapter discuss about the basic concepts of digital analytics, methods, and techniques for digital analysis. #### **BIG DATA: INTRODUCTION** Big data owns 3 V's (Volume, Velocity and Variety). It is defined as the data that appears to be in huge volume of different data that travels with right speed and reaches the destination within the stipulated time frame so that the data could be used for real-time analysis and further reaction. The structure of big data could be structured or unstructured data that could be in any form such as text files, multimedia files, financial data etc. Data comes from several data sources in order to form data inundation. Data sources could be categorized as electronic gadgets like mobile sensors, medical imaging, smart grids, video surveillance, social media video rendering and genetic engineering etc. so as to form data surge. The fastest- growing sources of big data are social media and genetic engineering. Big data might possess data that contains data structures such as structured, unstructured, semi structured and quasi structured. The configuration of structured data includes reports, contracts, email and other communications. Structured DOI: 10.4018/978-1-5225-5763-0.ch003 tured data displays the information in the form of text files. The information is displayed in columns and rows. Furthermore, it could be easily organized and processed with the help of data mining tools. This could be envisaged as a perfectly organized filing cabinet in which identification, labeling is a simple task and it is easy to access. Most of the organizations might like to be familiar with this type of data and it is used in an effective and efficient manner. Data does not have any intrinsic structure. It is available in the form of complex data sources such as email, multimedia content, web logs, sales automation and social media data as denoted by Marcos et al (2015). As per Holzinger et al (2013), unstructured information may account for more than 70% to 80% of all data in organizations. Semi structured data does not match with the prescribed structure of data models in the perspective of relationships. Examples of semi structured data could be XML, JSON, MongoDB that stores data in JSON. Quasi structured data is defined as the textual data with inconsistent data formats that could be formatted with effort and time. For example, quasi structured data refer to the click stream data that might consist of inconsistent data values and formats. Few organizations, definite methods must be extended so that it has to manage the huge volume of data. The below Table 1 illustrates the generation of data that occurred in several organizations. ### **Components of Big Data** As the name implies, big data contributes much for business applications and it has produced a note-worthy impact in various fields that includes the social media, satellite imaging, banking transactions and healthcare machines. S. Hendrickson (2010) noted that information increase takes place in a rapid manner at the rate of 10x every five years. It was found that the capacity for storage in general-purpose computers was 2.9×1020 bytes and that for communication was 2.0×1021 bytes. From Hilbert & Lopez (2011), it is understood that these computers could also perform 6.4×1018 instructions per second. Table 1. Growth of unstructured data | Organizations | Generation | |--|---| | Wordpress (Nawsher
Khan et al., 2014) | It is a free open source content management system in which nearly 350 new blogs per minute are published by bloggers | | LinkedIn (Nawsher
Khan et al., 2014) | A business and employment-oriented social networking service. Through this 2.1 million groups have been created | | Apple (Nawsher Khan et al., 2014) | Around 47000 applications are downloaded per minute | | Facebook | 34,722 likes are registered in each and every minute 47% of Facebook users only access the platform through mobile Users generate 4 million likes every minute More than 250 billion photos have been uploaded to Facebook This equates to 350 million photos per day | | YouTube | 300 hours of video are uploaded to YouTube every minute! Almost 5 billion videos are watched on Youtube every single day. YouTube gets over 30 million visitors per day In an average month, 8 out of 10 18-49 year-olds watch YouTube. | | Twitter | Barack Obama's victory tweet was the most retweeted tweet ever with over 800K retweets Top 3 countries on Twitter are the USA at 107 million, Brazil 33 million and Japan at nearly 30 million The average Twitter user has tweeted 307 times | 17 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/big-data-and-digital-analytics/208505 #### Related Content #### Security for Smart Vehicle in IOT Deepa Sethuramalingam, Brindha N.and S. Balamurugan (2019). *The IoT and the Next Revolutions Automating the World (pp. 289-296).* www.irma-international.org/chapter/security-for-smart-vehicle-in-iot/234036 ## Innovation in Product Design: IoT Objects Driven New Product Innovation and Prototyping Using 3D Printers Ravi Ramakrishnanand Loveleen Gaur (2020). Securing the Internet of Things: Concepts, Methodologies, Tools, and Applications (pp. 1239-1259). www.irma-international.org/chapter/innovation-in-product-design/234991 #### Synchronous Relaying in Vehicular Ad-Hoc Networks D. Moltchanov, A. Vinel, J. Jakubiakand Y. Koucheryavy (2013). Security, Design, and Architecture for Broadband and Wireless Network Technologies (pp. 127-132). www.irma-international.org/chapter/synchronous-relaying-vehicular-hoc-networks/77415 #### IoT-Based Energy Harvesting and Future Research Trends in Wireless Sensor Networks Wasswa Shafik (2023). Handbook of Research on Network-Enabled IoT Applications for Smart City Services (pp. 282-306). www.irma-international.org/chapter/iot-based-energy-harvesting-and-future-research-trends-in-wireless-sensor-networks/331338 #### Search and Rescue System Based on NB-IoT Wearable Device Christos J. Bouras, Apostolos Gkamas, Spyridon Aniceto Katsampiris Salgadoand Nikolaos Papachristos (2021). *Principles and Applications of Narrowband Internet of Things (NBIoT) (pp. 195-222).*www.irma-international.org/chapter/search-and-rescue-system-based-on-nb-iot-wearable-device/268951