
���

Chapter LXXII
Indices in XML Databases

Hadj Mahboubi
University of Lyon (ERIC Lyon 2), France

Jérôme Darmont
University of Lyon (ERIC Lyon 2), France

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

IntroductIon

Since XML (eXtensible Markup Language) (Bray,
Paoli, Sperberg-McQueen, Maler & Yergeau,
2004) emerged as a standard for information
representation and exchange, storing, indexing,
and querying, XML documents have become
major issues in database research. Query pro-
cessing and optimization are very important in
this context, and indices are data structures that
help enhance performances substantially. Though
XML indexing concepts are mainly inherited
from relational databases, XML indices bear
numerous specificities.

The aim of this chapter is to present an overview
of state-of-the-art XML indices and to discuss
the main issues, trade-offs, and future trends
in XML indexing. Furthermore, since XML is

gaining importance for representing business
data for analytics (Beyer, Chamberlin, Colby,
Özcan, Pirahesh & Xu, 2005), we also present
an index we developed specifically for XML data
warehouses.

background

Indexing and querying XML documents through
path expressions expressed in XPath (Clark &
DeRose, 1999) and XQuery (Boag, Chamberlin,
Fernandez, Florescu, Robie & Siméon, 2006)
have been the focus of many research studies.
Two families of approaches aim at efficiently
processing path join queries. They are based on
structural summaries and numbering schemes,
respectively.

 ���

Indices in XML Databases

structural summary-based Indices

Structural index-based approaches help traverse
XML documents’ hierarchies by referencing
structural information about these documents.
These techniques extract structural information
directly from data and create a structural summary
that is a labeled, directed graph. Graph schemas
can be used as indices for path queries. Dataguide
(Goldman & Widom, 1997) and 1-index (Milo &
Suciu, 1999) belong to this family of indices.

Dataguide’s structure describes by one single
label all the nodes whose labels (names) are iden-
tical. Its definition is based on targeted path sets
(i.e., sets of nodes that are reached by traversing
a given path).

1-index clusters nodes according to a bi-
similarity relationship. Two nodes are said to be
bisimilar if they share identical label paths in the
XML data graph. Bisimilar nodes are grouped
into one index node. A 1-index is smaller than
the initial data graph and thereby facilitates query
evaluation. To help select labels or evaluate path
expressions, hash tables or B-trees are used to
index graph labels.

Dataguide and 1-index code all paths from the
root node. The size of such summary structures
may be larger than the original XML document,
which degrades query performance. A(k)-index
(Kaushik, Shenoy, Bohannon & Gudes, 2002) is
a variant of 1-index based on k-dissimilarity and
builds an approximate index to reduce its graph’s
size. An A(k)-index can retrieve, without referring
to the data graph, path expressions of length of
at most k, where k controls index resolution and
influences index size in a proportional manner.
However, for large values of k, index size may
still become very large. For small values of k,
index size is substantially smaller, but A(k)-index
cannot handle long path expressions.

To accommodate path expressions of various
lengths without unnecessarily increasing index
size, D(k)-index (Qun, Lim & Ong, 2003) assigns

different values of k to index nodes. These values
conform to a given set of frequently used path
expressions (FUPs). Small or large values of k
are assigned to index parts that are targeted by
short or long path expressions, respectively. To
help evaluate path expressions with branching,
a variant called UD(k, l)-index (Wu, Wang, Xu
Yu, Zhou & Zhou, 2003) also imposes downward
similarity.

AD(k)-index (He & Yang, 2004) builds a
coarser index than A(k)-index but suffers from
over-refinement. M(k)-index, an improvement of
D(k)-index, and solves the problem of large scan
space within the index without affecting path
coverage. However, there is a drawback in this
design: M(k)-index requires adapting to a given
list of FUPs.

U(*)-index (universal, generic index) (Boulos
& Karakashian, 2006), like 1-index, exploits bi-
similarity. However, U(*)-index exploits a special
node-labeling scheme to prune the search space
and accelerate XPath evaluations. Furthermore,
U(*)-index does not need to be adapted to any
particular list of FUP; it has a uniform resolution
and is hence more generic.

APEX (Chung, Min & Shim, 2002) is an adap-
tive index that searches for a trade-off between
size and effectiveness. Instead of indexing all
paths from the root, APEX only indexes frequently
used paths and preserves the structure of source
data in a tree. However, since FUPs are stored
in the index, path query processing is quite ef-
ficient. APEX is also workload-aware (i.e., it can
be dynamically updated according to changes in
query workload). A data mining method is used to
extract FUPs from the workload for incremental
update (Agrawal & Srikant, 1995).

The main weakness of these indices is that they
can only answer single path expressions directly.
To process so-called branching path expressions
whose graphical representation contains branches
and corresponds to a small tree (or twig), they
must perform a costly join operation. To reduce

6 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/indices-xml-databases/20753

Related Content

The Expert’s Opinion: A Personal Perspective on the Use of Computing Technology
Shirley Becker (1998). Journal of Database Management (pp. 37-38).

www.irma-international.org/article/expert-opinion-personal-perspective-use/51204

Enterprise Application System Reengineering: A Business Component Approach
Shi-Ming Huang, Shin-Yuan Hung, David Yen, Shing-Han Liand Chun-Ju Wu (2006). Journal of Database

Management (pp. 66-91).

www.irma-international.org/article/enterprise-application-system-reengineering/3358

Similarity Search in Time Series
Maria Kontaki, Apostolos N. Papadopoulosand Yannis Manolopoulos (2009). Handbook of Research on

Innovations in Database Technologies and Applications: Current and Future Trends (pp. 288-299).

www.irma-international.org/chapter/similarity-search-time-series/20713

Exploring the Effects of Process Characteristics on Product Quality in Open Source Software

Development
Stefan Kochand Christian Neumann (2010). Principle Advancements in Database Management

Technologies: New Applications and Frameworks (pp. 132-159).

www.irma-international.org/chapter/exploring-effects-process-characteristics-product/39353

A Parallel Methodology for Reduction of Coupling in Distributed Business-to-Business E-

Commerce Transactions
Anthony Mark Ormeand Letha H. Etzkorn (2009). Database Technologies: Concepts, Methodologies,

Tools, and Applications (pp. 1984-1999).

www.irma-international.org/chapter/parallel-methodology-reduction-coupling-distributed/8015

http://www.igi-global.com/chapter/indices-xml-databases/20753
http://www.irma-international.org/article/expert-opinion-personal-perspective-use/51204
http://www.irma-international.org/article/enterprise-application-system-reengineering/3358
http://www.irma-international.org/chapter/similarity-search-time-series/20713
http://www.irma-international.org/chapter/exploring-effects-process-characteristics-product/39353
http://www.irma-international.org/chapter/parallel-methodology-reduction-coupling-distributed/8015

