
644  

Chapter LXIX
An Overview on 

Signature File Techniques
Yangjun Chen

University of Winnipeg, Canada

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Introduction

An important question in information retrieval 
is how to create a database index which can be 
searched efficiently for the data one seeks. Today, 
one or more of the following four techniques have 
been frequently used: full text searching, B-trees, 
inversion and the signature file. Full text search-
ing imposes no space overhead, but requires long 
response time. In contrast, B-trees, inversion and 
the signature file work quickly, but need a large 
intermediary representation structure (index), 
which provides direct links to relevant data. In 
this paper, we concentrate on the techniques of 
signature files and discuss different construction 
approaches of a signature file.

The signature technique cannot only be used 
in document databases, but also in relational and 
object-oriented databases. In a document data-
base, a set of semistructured (XML) documents 
is stored and the queries related to keywords are 

frequently evaluated. To speed up the evaluation 
of such queries, we can construct signatures 
for words and superimpose them to establish 
signatures for document blocks, which can be 
used to cut off non-relevant documents as early 
as possible when evaluating a query. Especially, 
such a method can be extended to handle the so-
called containment queries, for which not only 
the key words, but also the hierarchical structure 
of a document has to be considered. We can also 
handle queries issued to a relational or an object-
oriented database using the signature technique 
by establishing signatures for attribute values, 
tuples, as well as tables and classes. 

BACKGROUND

The signature file method was originally intro-
duced as a text indexing methodology (Faloutsos, 
1985; Faloutsos, Lee, Plaisant & Shneiderman, 



  645

An Overview on Signature File Techniques

1990). Nowadays, however, it is utilized in a 
wide range of applications, such as in office fil-
ing (Christodoulakis, Theodoridou, Ho, Papa & 
Pathria, 1986), hypertext systems (Faloutsos, 
Lee, Plaisant & Shneiderman, 1990), relational 
and object-oriented databases (Chang & Schek, 
1989; Ishikawa, Kitagawa & Ohbo, 1993; Lee & 
Lee, 1992; Sacks-Davis, Kent, Ramamohanarao, 
Thom & Zobel, 1995; Yong, Lee & Kim, 1994, 
Tousidou et al., 2002; Chen, 2004), as well as in 
data mining (Andre-Joesson & Badal, 1997). It 
requires much smaller storage space than inverted 
files, and can handle insertion and update opera-
tions in databases easily.

A typical query processing with the signature 
file is as follows: When a query is given, a query 
signature is formed from the query value. Then 
each signature in the signature file is examined 
over the query signature. If a signature in the file 
matches the query signature, the corresponding 
data object becomes a candidate that may satisfy 
the query. Such an object is called a drop. The 
next step of the query processing is the false drop 
resolution. Each drop is accessed and examined 
whether it actually satisfies the query condition. 
Drops that fail the test are called false drops 
while the qualified data objects are called actual 
drops.

A variety of approaches for constructing sig-
nature files have been proposed, such as bit-slice 
files (Ishikawa, Kitagawa & Ohbo, 1993), S-trees 
(Deppisch, 1986), and signature trees (Chen, 2002; 
Chen, 2005), as well as their different variants. 
In the following, we overview all of them and 
analyze their computational complexities. 

Signature Files and 
Signature File Organization

Signature Files

Intuitively, a signature file can be considered as 
a set of bit strings, which are called signatures. 

Compared to the inverted index, the signature 
file is more efficient in handling new insertions 
and queries on parts of words. But the scheme 
introduces information loss. More specifically, its 
output usually involves a number of false drops, 
which may only be identified by means of a full 
text scanning on every text block short-listed in 
the output. Also, for each query processed, the 
entire signature file needs to be searched (Fa-
loutsos, 1985; Faloutsos, 1992). Consequently, 
the signature file method involves high process-
ing and I/O cost. This problem is mitigated by 
partitioning the signature file, as well as by ex-
ploiting parallel computer architecture (Ciaccia 
& Zezula, 1996).

When creating a signature file, each word 
is processed separately by a hashing function. 
The scheme sets a constant number (m) of 1s in 
the [1..F] range. The resulting binary pattern is 
called the word signature. Each text is seen to 
consist of fixed size logical blocks and each block 
involves a constant number (D) of non-common, 
distinct words. The D word signatures of a block 
are superimposed (bit OR-ed) to produce a single 
F-bit pattern, which is the block signature stored 
as an entry in the signature file.

Fig. 1 depicts the signature generation and 
comparison process of a block containing three 
words (then D = 3), say “John”, “12345678”, and 
“professor”. Each signature is of length F = 12, 
in which m = 4 bits are set to 1. When a query 
arrives, the block signatures are scanned and 
many non-qualifying blocks are discarded. The 
rest are either checked (so that the “false drops” 
are discarded; see below) or they are returned to 
the user as they are. Concretely, a query speci-
fying certain values to be searched for will be 
transformed into a query signature sq in the same 
way as for word signatures. The query signature 
is then compared to every block signature in the 
signature file. Three possible outcomes of the 
comparison are exemplified in Fig. 1: (1) the block 
matches the query; that is, for every bit set in sq, 
the corresponding bit in the block signature s is 



 

 

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/overview-signature-file-techniques/20750

Related Content

Cost and Service Capability Considerations on the Intention to Adopt Application Service

Provision Services
Yurong Yao, Denis M. Leeand Yang W. Lee (2010). Journal of Database Management (pp. 90-113).

www.irma-international.org/article/cost-service-capability-considerations-intention/43731

Multimedia Databases
Mariana Hentea (2005). Encyclopedia of Database Technologies and Applications (pp. 390-394).

www.irma-international.org/chapter/multimedia-databases/11178

Artificial Intelligence (AI) Ethics: Ethics of AI and Ethical AI
Keng Siauand Weiyu Wang (2020). Journal of Database Management (pp. 74-87).

www.irma-international.org/article/artificial-intelligence-ai-ethics/249172

Extending UML for Space- and Time-Dependent Applications
Rosanne Price, Nectaria Tryfonaand Christian S. Jensen (2002). Advanced Topics in Database Research,

Volume 1 (pp. 342-366).

www.irma-international.org/chapter/extending-uml-space-time-dependent/4336

A Review on the Integration of Deep Learning and Service-Oriented Architecture
Marcelo Fantinato, Sarajane Marques Peres, Eleanna Kafeza, Dickson K. W. Chiuand Patrick C. K. Hung

(2021). Journal of Database Management (pp. 95-119).

www.irma-international.org/article/a-review-on-the-integration-of-deep-learning-and-service-oriented-architecture/282446

http://www.igi-global.com/chapter/overview-signature-file-techniques/20750
http://www.irma-international.org/article/cost-service-capability-considerations-intention/43731
http://www.irma-international.org/chapter/multimedia-databases/11178
http://www.irma-international.org/article/artificial-intelligence-ai-ethics/249172
http://www.irma-international.org/chapter/extending-uml-space-time-dependent/4336
http://www.irma-international.org/article/a-review-on-the-integration-of-deep-learning-and-service-oriented-architecture/282446

