
���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

IntroductIon

Integrity checking has been a perennial topic in
almost all database conferences, journals, and
research labs. The importance of the issue is testi-
fied by very large amounts of research activities
and publications. They are motivated by the fact
that integrity checking is practically unfeasible
for significant amounts of stored data without
a dedicated approach to optimize the process.
Basic early approaches have been extended to
deductive, object-relational, XML- (extensible
markup language) based, distributed, and other
kinds of advanced database technology. However,
the fundamental ideas that are already present
in the seminal paper (Nicolas, 1982) have not
changed much.

The basic principle is that, in most cases, a
so-called simplification, that is, a simplified form
of the set of integrity constraints imposed on the
database, can be obtained from a given update (or

just an update schema) and the current state of
the database (or just the database schema). Thus,
integrity, which is supposed to be an invariant
of all possible database states, is checked upon
each update request, which in turn is authorized
only if the check of the simplification yields that
integrity is not violated. Here, simplified essen-
tially means more efficiently evaluated at update
time. A general overview of the field of simplified
integrity checking is provided in Martinenghi,
Christiansen, and Decker (2006).

A common point of view by which the need
for integrity checking is justified can be charac-
terized as follows. Whenever a database contains
erroneous, unwanted, or faulty information, that
is, data that violate integrity, answers to queries
cannot be trusted. Hence, simplification methods
for integrity checking usually address this issue
in a very drastic way: In order to avoid possibly
wrong answers that are due to integrity violation,
incorrect stored data that cause inconsistency need
to be completely prevented. However, this drastic

Chapter XXXVIII
Inconsistency-Tolerant

Integrity Checking
Hendrik Decker

Instituto Technológico de Informática, Spain
Ciudad Politécnica de la Innovación, Spain

Davide Martinenghi
Politecnico di Milano, Italy

 ���

Inconsistency-Tolerant Integrity Checking

attitude is most often unrealistic: The total absence
of unwanted, incorrect, or unexpected data is
definitely an exception in virtually all real-world
scenarios. Still, it is desirable to preserve the good
data in the database while preventing more bad
ones from sneaking in and, thus, further diminish
the trustworthiness of answers to queries.

The intolerant attitude of the simplification
approach of integrity checking toward data that
violate integrity is reflected in Nicolas (1982) and
virtually all publications on the same subject that
came after it. They all postulate the categorical
premise of total integrity satisfaction, that is,
that each constraint must be satisfied in the old
database state, given when an update is requested
but not yet executed. Otherwise, correctness of
simplification is not guaranteed.

As opposed to the attention granted to integrity
checking in academia, support for the declarative
specification and efficient evaluation of semantic
integrity in practical systems has always been
relatively scant, apart from standard constructs
such as constraints on column values, or primary
and foreign keys in relational database tables.
Various reasons have been identified for this lack
of practical attention. Among them, the logically
abstract presentation of many of the known sim-
plification methods is often mentioned. Here, we
focus on another issue of integrity checking that
we think is even more responsible for a severe
mismatch between theory and practice: Hardly
any database ever is in a perfectly consistent state
with regard to its intended semantics. Clearly,
this contradicts the fundamental premise that the
database must always satisfy integrity. Thus, due
to the intolerance of classical logic with respect
to inconsistency, integrity checking is very often
not considered an issue of practical feasibility or
even relevance.

Based on recent research results, we are going
to argue that inconsistency is far less harmful for
database integrity than as suggested by commonly
established results. We substantiate our claim by
showing that, informally speaking, the consistent
part of a possibly inconsistent database can be
preserved across updates. More precisely, we show

that, if the simplified form of an integrity theory is
satisfied, then each instance of each constraint that
has been satisfied in the old state continues to be
satisfied in the new updated state, even if the old
database is not fully consistent. Therefore, such
an approach can rightfully be called inconsistency
tolerant. Yet, we are also going to see that the
use of inconsistency-tolerant integrity checking
methods prevents an increase of inconsistency
and may even help to decrease it.

background

Throughout, we refer to the relational framework
of deductive databases, that is, relational databases,
with possibly recursive view definitions described
in clause form (Abiteboul, Hull, & Vianu, 1995).
Thus, a database consists of a set of facts and a
set of rules, that is, tuples and view definitions,
respectively, in the terminology of the relational
model.

An integrity constraint (or, shortly, constraint)
expresses a semantic invariant, in other words, a
condition that is supposed to hold in each state
of the database. In general, it can be expressed
by any closed first-order logic formula in the
language of the database on which it is imposed.
Usually, without loss of generality, constraints
are either represented in prenex normal form
(i.e., with all quantifiers moved leftmost and all
negation symbols moved innermost) or as denials
(i.e., datalog clauses with empty heads). Such a
denial expresses that, if its condition is satisfied,
then integrity is violated. An integrity theory is a
finite set of constraints.

We limit ourselves to databases with a unique
standard model. For a closed formula W and a
database D, we write D |= W (resp., D |≠ W) to
indicate that W evaluates to true (resp., false) in
the standard model of D. For a set of formulas Г,
we write D |= Г (resp., D |≠ Г) to indicate that,
for each (resp., some) formula W in Г, we have
D |= W (resp., D |≠ W). For a constraint W and
an integrity theory Г, it is also usual to say that
D satisfies (resp., violates) W and Г, respectively.

8 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/inconsistency-tolerant-integrity-checking/20719

Related Content

Architecture for Big Data Storage in Different Cloud Deployment Models
Chandu Thota, Gunasekaran Manogaran, Daphne Lopezand Revathi Sundarasekar (2018). Handbook of

Research on Big Data Storage and Visualization Techniques (pp. 196-226).

www.irma-international.org/chapter/architecture-for-big-data-storage-in-different-cloud-deployment-models/198763

Looking for Information in Fuzzy Relational Databases Accessible Via Web
Carmen Martínez-Cruz, Ignacio José Blancoand Maria Amparo Vila (2009). Database Technologies:

Concepts, Methodologies, Tools, and Applications (pp. 2448-2471).

www.irma-international.org/chapter/looking-information-fuzzy-relational-databases/8046

Using Ontology Languages for Conceptual Modeling
Palash Bera, Anna Krasnoperovaand Yair Wand (2010). Journal of Database Management (pp. 1-28).

www.irma-international.org/article/using-ontology-languages-conceptual-modeling/39114

UB2SQL: A Tool for Building Database Applications Using UML and B Formal Method
Amel Mammar (2009). Advanced Principles for Improving Database Design, Systems Modeling, and

Software Development (pp. 111-131).

www.irma-international.org/chapter/ub2sql-tool-building-database-applications/4295

Evaluation of MDE Tools from a Metamodeling Perspective
João de Sousa Saraivaand Alberto Rodrigues da Silva (2008). Journal of Database Management (pp. 21-

46).

www.irma-international.org/article/evaluation-mde-tools-metamodeling-perspective/3393

http://www.igi-global.com/chapter/inconsistency-tolerant-integrity-checking/20719
http://www.irma-international.org/chapter/architecture-for-big-data-storage-in-different-cloud-deployment-models/198763
http://www.irma-international.org/chapter/looking-information-fuzzy-relational-databases/8046
http://www.irma-international.org/article/using-ontology-languages-conceptual-modeling/39114
http://www.irma-international.org/chapter/ub2sql-tool-building-database-applications/4295
http://www.irma-international.org/article/evaluation-mde-tools-metamodeling-perspective/3393

