
 ���

Chapter XXIII
Horizontal Data Partitioning:

Past, Present and Future

Ladjel Bellatreche
LISI/ENSMA - University of Poitiers, France

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

IntroductIon

Horizontal data partitioning is the process of
splitting access objects into set of disjoint rows.
It was first introduced in the end of 70’s and
beginning of the 80’s (Ceri et al., 1982) for logi-
cally designing databases in order to improve the
query performance by eliminating unnecessary
accesses to non-relevant data. It knew a large
success (in the beginning of the 80’s) in design-
ing homogeneous distributed databases (Ceri et
al., 1982; Ceri et al., 1984; Özsu et al., 1999) and
parallel databases (DeWitt et al., 1992; Valduriez,
1993). In distributed environment, horizontal par-
titioning decomposes global tables into horizontal
fragments, where each partition may be spread
over multiple nodes. End users at the node can
perform local queries/transactions on the parti-
tion transparently (the fragmentation of data
across multiple sites/processors is not visible to
the users.). This increases performance for sites

that have regular transactions involving certain
views of data, whilst maintaining availability and
security. In parallel database context (Rao et al.,
2002), horizontal partitioning has been used in
order to speed up query performance in a shared-
nothing parallel database system (DeWitt et al.,
1992). This will be done by both intra-query and
intra-query parallelisms (Valduriez, 1993). It also
facilitates the exploitation of the inputs/outputs
bandwidth of the disks by reading and writing data
in parallel. In this paper, we use fragmentation
and partitioning words interchangeably.

There are two versions of horizontal parti-
tioning (Özsu et al., 1999): primary and derived.
Primary horizontal partitioning of a relation is
performed using selection predicates that are de-
fined on that relation. Note that a simple predicate
(selection predicate) has the following form: A θ
value, where A is an attribute of the table to be
fragmented, θ is one of six comparison operators
{=, <, >, ≤, ≥} and value is the predicate constant

�00

Horizontal Data Partitioning

belonging to the domain of the attribute A. De-
rived horizontal partitioning, on the other hand,
is the fragmentation of a relation that results from
predicates being defined on another relation. In
other word, the derived horizontal partitioning
of a table is based on the fragmentation schema
of another table (the fragmentation schema is
the result of the partitioning process of a given
table). The derived partitioning of a table R ac-
cording a fragmentation schema of S is feasible
if and only if there is a join link between R and
S. The relation at the link is called the owner of
the link (the case of the table S) and the relation
at the head is called member (Ceri et al., 1982)
(the case of the relation R).

In the context of data warehousing, the hori-
zontal partitioning becomes an important aspect
of physical design. Note that in relational data
warehouses, two types of tables exist: dimension
tables and fact table. A dimension table is a table
containing the data for one dimension within a
warehouse schema. The primary key is used to
link to the fact table, and each level in the dimen-
sion has a corresponding field in the dimension
table. The fact table is the central table in a star
schema, containing the basic facts or measures
of interest. Dimension fields are also included
(as foreign keys) to link to each dimension table.
In this context, horizontal partitioning allows to
partition tables (fact and dimension tables) (Bel-
latreche et al., 2006) and materialized views and
indexes (Sanjay et al., 2004). It has also been
used designing parallel data warehouses. Due
to its importance in the database fields, most of
today’s commercial database systems offer na-
tive DDL (data definition language) support for
defining horizontal partitions of a table (Sanjay et
al., 2004), where many partitioning methods are
available: range, hash, list and composite (hash
list, range hash). These methods map a given row
in an object to a key partition. All rows of the
object with the same partition number are stored
in the same partition. These partitions may be as-
signed either in a single-node partitioning (single

machine) or in multi-node partitioning (parallel
machine). A range partitioning method is defined
by a tuple (c, V), where c is a column type and V
is an ordered sequence of values from the domain
of c. This partitioning mode is often used when
there is a logical range (examples: starting date,
transaction date, close date, etc.).

Example 1

CREATE TABLE PARTITION_BY_RANGE
(. . . , BIRTH_MM INT NOT NULL, BIRTH_DD
INT NOT NULL, BIRTH_YYYY INT NOT
NULL)
PARTITION BY RANGE (BIRTH_YYYY,
BIRTH_MM, BIRTH_DD)
(PARTITION P_01 VALUES LESS THAN (1970,
01, 01) TABLESPACE TS01, . . .
PARTITION P_N VALUES LESS THAN
(MAXVALUE, MAXVALUE, MAXVALUE)
TABLESPACE TS05)
ENABLE ROW MOVEMENT;

The hash mode decomposes the data according
to a hash function (provided by the system) applied
to the values of the partitioning columns.

Example 2

CREATE TABLE PARTITION_BY_HASH
(FIRST_NAME VARCHAR2(10), MIDDLE_
INIT VARCHAR2(1), LAST_NAME VAR-
CHAR2(10), AGE INT NOT NULL)
PARTITION BY HASH (AGE)
(PARTITION P1TABLESPACE TS01,
 PARTITION P2 TABLESPACE TS02,
 PARTITION P3 TABLESPACE TS03,
 PARTITION P4 TABLESPACE TS04)
ENABLE ROW MOVEMENT;

The list partitioning splits a table according
list values of a column. These methods can be
combined to generate composite partitioning
(range-hash, range-list). These methods are avail-
able in Oracle.

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/horizontal-data-partitioning/20704

Related Content

Multi-Fuzzy-Objective Graph Pattern Matching with Big Graph Data
Lei Li, Fang Zhangand Guanfeng Liu (2019). Journal of Database Management (pp. 24-40).

www.irma-international.org/article/multi-fuzzy-objective-graph-pattern-matching-with-big-graph-data/241830

Federated Process Framework in a Virtual Enterprise Using an Object-Oriented Database and

Extensible Markup Language
Kyoung-Il Bae, Jung-Hyun Kimand Soon-Young Huh (2003). Journal of Database Management (pp. 27-47).

www.irma-international.org/article/federated-process-framework-virtual-enterprise/3289

Similarity Search in Time Series
Maria Kontaki, Apostolos N. Papadopoulosand Yannis Manolopoulos (2009). Handbook of Research on

Innovations in Database Technologies and Applications: Current and Future Trends (pp. 288-299).

www.irma-international.org/chapter/similarity-search-time-series/20713

Biological Data Mining
George Tzanis, Christos Berberidisand Ioannis Vlahavas (2005). Encyclopedia of Database Technologies

and Applications (pp. 35-41).

www.irma-international.org/chapter/biological-data-mining/11119

Investigating Goal-Oriented Requirements Engineering for Business Processes
Geert Poels, Ken Decreus, Ben Roelensand Monique Snoeck (2013). Journal of Database Management

(pp. 35-71).

www.irma-international.org/article/investigating-goal-oriented-requirements-engineering-for-business-processes/86283

http://www.igi-global.com/chapter/horizontal-data-partitioning/20704
http://www.irma-international.org/article/multi-fuzzy-objective-graph-pattern-matching-with-big-graph-data/241830
http://www.irma-international.org/article/federated-process-framework-virtual-enterprise/3289
http://www.irma-international.org/chapter/similarity-search-time-series/20713
http://www.irma-international.org/chapter/biological-data-mining/11119
http://www.irma-international.org/article/investigating-goal-oriented-requirements-engineering-for-business-processes/86283

