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Abstract

Geospatial predictive models often require mapping of predefined concepts or categories with various 
conditioning factors in a given space. This chapter discusses various aspects of uncertainty in predictive 
modeling by characterizing different typologies of classification uncertainty. It argues that understanding 
uncertainty semantics is a perquisite for efficient handling and management of predictive models.  

1. Spatial Prediction and 
Classification

Geospatial predictive models entail an array of 
analytical techniques of data mining, classical 
statistical and geostatistical models that attempt 
to predict spatial states and behavior of objects 
from a fine set of observations. The process of pre-
diction presupposes a set of spatial concepts and 
categories to which objects are to be mapped. For 
example, spatial processes, such as classification 
of land cover from satellite image, modeling for-

est fire, propagation of epidemics, and prediction 
of urban sprawl require a unifying and common 
reference of “space” or location where the multiple 
features of spatial attributes are to be mapped to 
predefined class labels. The prediction of spatial 
features can be conceived as a process of driving 
classification schemes in relation to certain spa-
tial properties such as neighborhood, proximity, 
dependency, as well as similarity of non-spatial 
attributes (Han & Kamber, 2006; Shekhar & 
Chawla, 2003).  In data mining, a classification 
function is often defined as a mapping function:
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C: →Af , where A is the domain of function, 
f  represents attribute space and C is the set of 

class categories.

2. Uncertainty in Spatial 
Classification

Uncertainty may emerge from ontological con-
straints in classification i.e., from the lack of 
specification of what kind of spatial objects ex-
ist, as well as from epistemic limitations which 
concern whether such objects are knowable to 
subjective  schemes, and if so,  to what extent 
they can be represented in the subjective frame-
work, given the limited empirical evidences. 
Epistemic uncertainty in spatial classification 
emerges due to inadequate representation of 
spatial knowledge which is often incomplete, 
imprecise, fragmentary, and ambiguous. The at-
tributes of spatial objects or evidences suggesting 
various conceptual or thematic classes may often 
suggest conflicting categories. Moreover, clas-
sification labels are dependent on the resolution 
of observation and the extent of granularity. For 
example, the observation of coarser granularity 
offers less detail while the clumping of informa-
tion into pixels in remotely sensed images may 
prevent sub-pixel entities being distinguished 
(Fisher, 1997). The classification of land cover 
from satellite image depends not only on a specific 
spatial resolution, radiometric resolution and the 
corresponding spectral signatures limit predictive 
accuracy. Therefore, spatial characteristics of a 
given observation are indiscernible with respect 
to attributes associated with it. For example, the 
number of vegetation types that can be identified 
from an NDVI (Normalized Difference Vegetation 
Index) image significantly increases when a very 
high radiometric resolution is used.  Moreover, 
in a specific case, a multispectral image may 
provide more accuracy than a hyperspectral 
image, but such accuracy is of little value if it is 

achieved at the cost of less specificity or higher 
imprecision. 

3. Typologies of 
Classification Uncertainty

While there is increasing awareness of un-
certainty, and its aspects and dimensions in 
predictive as well as classificatory schemes, 
little agreement exists among experts on how to 
characterize them. Many typologies of uncer-
tainty have been suggested from risk analysis 
perspective, which often overlaps and builds on 
each other (Ferson & R. Ginzburg, 1996; Linkov 
& Burmistrov 2003; Regan et al., 2002). These 
typologies make distinctions between variability 
and lack of knowledge at the parameter and model 
level. However, from the geographic information 
perspective, the ontological specification of im-
perfection of geographic data provides some key 
vocabularies and taxonomies to deal with spatial 
uncertainties (Duckham et al., 2001; Worboys & 
Clementini, 2001).  Such ontology distinguishes 
between inaccuracy (i.e., errors or commission 
or omission) and imprecision, which arises from 
limitations on the granularity of the schema or 
levels of detail obtainable for an observation under 
which the observation is made (Worboys, 1998). 
The concept “vagueness” refers to indeterminate 
boundary-line cases or “inexact concepts”. 

Classification of geographic objects with in-
determinate boundaries offers many challenges 
(Burrough & Frank, 1996) which emerge from 
the boundary of many real entities representing 
natural, social, or cultural phenomena (for exam-
ple, forests, mountains, areas ethnic distribution 
etc.). Since many common geographical concepts 
are vague (Fisher, 2000), the explicit specifica-
tion of vagueness is essential to characterize the 
classification performance. As a special type of 
vagueness, nonspecifity originates due to our 
inability to discern the true alternatives among 
several alternatives in a given context. It implies 
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