
1523

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  62

DOI: 10.4018/978-1-5225-3923-0.ch062

ABSTRACT

Autonomic service-driven applications represent a new realm of software that can discover new capa-
bilities, automatically integrate with other systems, and adapt to changing system environmental condi-
tions. For the past many years, researchers and practitioners have been investigating, prototyping, and 
evaluating these self-configuring, self-healing, self-optimizing, and self-protecting systems. Although 
validation is expected to play a key role in the success of autonomic systems, there are few works that 
address this topic. Dynamic adaptation in autonomic software results in structural and behavioral run-
time changes, which cannot be validated offline at design-time. Runtime testing has therefore emerged as 
a possible solution to validating dynamic adaptations in autonomic software. This chapter summarizes 
the state-of-the-art in runtime testing of autonomic systems, describes key challenges associated with 
runtime testing, and provides guidelines for integrating runtime testing approaches into autonomic soft-
ware using self-testing architectures. Finally, directions for future research for validation of autonomic 
components are discussed.

Validating Autonomic Services:
Challenges and Approaches

Tariq M. King
Ultimate Software Group, Inc., USA

Peter J. Clarke
Florida International University, USA

Mohammed Akour
North Dakota State University, USA

Annaji S. Ganti
Microsoft Corporation, USA



1524

Validating Autonomic Services
 

INTRODUCTION

Service-driven computing provides a software development model in which user needs are represented as 
services that are integrated to provide a software solution. The trend towards service-oriented architectures, 
Web and Grid services, and Cloud computing suggests that the service-driven paradigm is leading the 
way for building the next-generation systems. The grand vision of autonomic computing portrays these 
next-generation systems as ones that can configure, heal, optimize, and protect themselves (Kephart & 
Chess, 2003). Researchers have been steadily moving towards that vision through the development and 
evaluation of approaches and prototypes for autonomic service-driven applications.

Autonomic systems continually seek to fulfill one or more goals, typically specified through a set of 
high-level policies. To achieve system goals, services can be added, removed, replaced, and composed 
at runtime - a process referred to as dynamic software adaptation (Zhang et al., 2004). Dynamic software 
adaptation enables the system to automatically evolve by adding new capabilities after the system has 
been deployed to production. However, dynamic adaptation also presents new software engineering 
research challenges (Salehie & Tahvildari, 2009).

As the vision of software systems that configure, heal, optimize, and protect themselves starts to 
become a reality, academic researchers and industry practitioners must consider the implications of au-
tonomic computing on software quality. Incorporating self-management features into software increases 
its complexity, thereby making it more difficult to validate at development-time. Furthermore, since these 
systems can dynamically modify their own structure and behavior, runtime testing must be performed 
to avoid costly system failures (King et al., 2007; Costa et al., 2010; Tamura et al., 2013).

With software testing being the de-facto standard used for validating software in industry, it is ex-
pected to play a major role in the success of autonomic service-driven computing. In this chapter, we 
discuss issues and possible solutions for testing autonomic systems. More specifically, we focus on the 
use of runtime testing as an emerging solution for validating autonomic service-driven applications. 
The mission of this chapter includes the following objectives: summarize the current state-of-the art in 
runtime testing of dynamically adaptive autonomic systems; identify and describe the key challenges 
associated with validating autonomic service-driven applications at runtime; discuss proposed solutions 
that address the identified key challenges, and provide guidelines and recommendations to implement 
practical runtime testing solutions for autonomic software.

The rest of the chapter is organized as follows. The background section introduces the concept of 
software testing, specifically runtime testing of autonomic systems, and discusses related works. The 
next section describes and discusses the challenges in testing autonomic systems, which is followed by 
a presentation of approaches to runtime testing of autonomic and adaptive services. Finally, promis-
ing future directions for closing the gap in the current state-of-the-art for runtime testing of autonomic 
service-driven systems is presented and concluded.

BACKGROUND

This section contains background material on software testing that is necessary for understanding the 
chapter. It also provides a literature review of research on the validation and verification of autonomic 
and adaptive software systems.



 

 

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/validating-autonomic-services/192934

Related Content

A Rigouous Framework for Model-Driven Development
Liliana María Favre (2010). Model Driven Architecture for Reverse Engineering Technologies: Strategic

Directions and System Evolution  (pp. 253-276).

www.irma-international.org/chapter/rigouous-framework-model-driven-development/49188

Cost-Benefit Analysis of Participation in Standardization: Developing a Calculation Tool
Henk J. de Vriesand Joey L. Veurink (2020). Disruptive Technology: Concepts, Methodologies, Tools, and

Applications  (pp. 445-460).

www.irma-international.org/chapter/cost-benefit-analysis-of-participation-in-standardization/231199

Hybrid Intelligent Systems in Ubiquitous Computing
Andrey V. Gavrilov (2012). Computer Engineering: Concepts, Methodologies, Tools and Applications  (pp.

100-119).

www.irma-international.org/chapter/hybrid-intelligent-systems-ubiquitous-computing/62437

Introduction to OpenFlow
Mohit Kumar Jaiswal (2018). Innovations in Software-Defined Networking and Network Functions

Virtualization (pp. 52-71).

www.irma-international.org/chapter/introduction-to-openflow/198193

SecInvest : Balancing Security Needs with Financial and Business Constraints
Siv Hilde Houmb, Indrajit Rayand Indrakshi Ray (2012). Dependability and Computer Engineering:

Concepts for Software-Intensive Systems  (pp. 306-328).

www.irma-international.org/chapter/secinvest-balancing-security-needs-financial/55334

http://www.igi-global.com/chapter/validating-autonomic-services/192934
http://www.irma-international.org/chapter/rigouous-framework-model-driven-development/49188
http://www.irma-international.org/chapter/cost-benefit-analysis-of-participation-in-standardization/231199
http://www.irma-international.org/chapter/hybrid-intelligent-systems-ubiquitous-computing/62437
http://www.irma-international.org/chapter/introduction-to-openflow/198193
http://www.irma-international.org/chapter/secinvest-balancing-security-needs-financial/55334

