
1232

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  49

DOI: 10.4018/978-1-5225-3923-0.ch049

ABSTRACT

Many years of effort have been expended by experienced practitioners and academic experts in develop-
ing software engineering standards. Organizations should see it as a positive advantage—rather than 
as a costly negative necessity—when they are required to develop software to a recognized standard. A 
genuine, constructive program of measures to ensure compliance with an objective standard will achieve 
development process improvements that would otherwise be difficult to motivate and bring to fruition. This 
chapter provides an overview and comparison of a number of software engineering standards specific 
to safety-critical and regulated sectors. It goes on to describe implications and benefits that flow from 
these standards. Informed by current software engineering research, suggestions are made for effective 
practical application of the standards, both at individual project and at organizational level.

1. INTRODUCTION

Ten years ago, in a retrospective on data for 12,000 projects, Jones (2003) found that defect removal 
efficiency level was highest for “systems” software including safety-critical software, attributed in part 
to the use of reviews, inspections and intensive test activities; overall, good quality control was found 
to be the best indicator for project success. Since then, the world has become more and more dependent 
on software-intensive systems and there is a constant struggle to deal cost effectively with the great in-
crease in system size and complexity while continuing to ensure safety (Larrucea, Combelles, & Favaro, 
2013). Of course, most software is not safety-critical; indeed, “Nowadays, software is everywhere and 
is often built by relatively inexperienced programmers” (Abdulla & Leino, 2013) and “most programs 
today are written not by professional software developers” (Andrew et al., 2011). On the other hand, 
much software, including commercial applications, is built on top of middleware (Emmerich, Aoyama, 
& Sventek, 2008) which should certainly be well engineered.

Lessons From Practices and 
Standards in Safety-Critical 

and Regulated Sectors
William G. Tuohey

Dublin City University, Ireland



1233

Lessons From Practices and Standards in Safety-Critical and Regulated Sectors
 

This chapter is based on the belief that all software development can benefit from the experience 
of the safety-critical and similar communities, both in terms of successful past and present practices 
and in how future challenges are being tackled. The focus of the chapter is mainly on general practices 
and especially software engineering standards, but it is pointed out that there are many specific lessons 
to be learned also. For example, Durisic, Nilsson, Staron, and Hansson (2013) are concerned, for the 
automotive industry, with monitoring the impact on architecture of on-going changes but note that “…
it is possible that the metrics are applicable to a wider range of software systems which rely on com-
munication between different modules over multiplex buses”. Apart from technical aspects, commercial 
benefits can be achieved by improving quality and, where applicable, regulatory practices in line with 
the criticality of the product (Meagher, Hashmi, & Tuohey, 2006).

There are very many published software engineering standards, some generic, some applicable within 
specific industrial sectors, some originating from particular procurement agencies, some developed by 
professional bodies, some relevant to certain categories of software (Tuohey, 2002). The multiplicity 
of standards, and the sometimes (necessarily) dry and legalistic style in which they are written, tend to 
make this material inaccessible to both software engineers and managers. Yet the standards may impose 
far-reaching constraints on day-to-day engineering work, on project procurement and management, and 
on an organization’s commercial performance. This chapter presents a synthesis of a number of repre-
sentative standards. This is achieved by first providing, with the aid of diagrams devised by the author, 
a somewhat detailed overview of the well known civil aviation standard RTCA/DO-178C (2011). It is 
hoped that this overview will be of practical utility to readers with particular interest in that standard. 
Next, more briefly, a selection of other standards is described in terms of their similarities and differences 
with respect to that reference. It is believed that RTCA/DO-178C (2011) is a good point of reference in 
that it is mature, is used by a wide variety of development organizations, and is applicable to software 
of different levels of criticality. Remarks on the evolution of this standard from its predecessor RTCA/
DO-178B (1992), to which backward compatibility was intended, are included in section 3.1.

Software engineering standards, together with supporting guidance and related material, constitute 
a considerable resource for the software developer. Some indications are provided in the chapter of 
the nature of the available material. A goal of the chapter is to provide practical suggestions on how 
to apply software engineering standards effectively. A particular effort is made to identify project- and 
organizational-level characteristics that follow from or are supportive of such standards. A key consid-
eration is that measures taken should be effective and efficient.

Very often, software development takes place within a wider system development context. This is 
made explicit in some of the standards, especially those dealing with safety-related systems such as 
RTCA/DO-178C (2011) which, in comparison with RTCA/DO-178B (1992) and drawing especially on 
ARP4754A/ED-79A (2010), includes a significant amount of new material on the overall system. Evi-
dently, this wider context may impact on or constrain how a software development is organized. While 
this chapter is mainly focused on purely software issues, some of these “wider” impacts are noted. In 
this context it is interesting to note the remark in Mashkoor and Jacquot (2011) that “by contrast [with 
older engineering disciplines] in software engineering, systems are sometimes developed by people with 
an incomplete knowledge of their particular domain”.

In the past, rigorous software engineering standards were imposed mainly on certain kinds of soft-
ware development, particularly those with safety impact or with stringent reliability requirements or of 
a clearly mission-critical nature (such as the on-board control of an unmanned satellite). However, the 
increasing use of software in all aspects of human activity means that the scope of the term “mission-



 

 

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/lessons-from-practices-and-standards-in-safety-

critical-and-regulated-sectors/192921

Related Content

Design and Optimizations of Lattice Boltzmann Methods for Massively Parallel GPU-Based

Clusters
Enrico Calore, Alessandro Gabbana, Sebastiano Fabio Schifanoand Raffaele Tripiccione (2018). Analysis

and Applications of Lattice Boltzmann Simulations (pp. 54-114).

www.irma-international.org/chapter/design-and-optimizations-of-lattice-boltzmann-methods-for-massively-parallel-gpu-

based-clusters/203087

The Effect of Organizational Slack on Innovation Performance: An Empirical Study of High-Tech

Industry in China
Qiuyue Pan, Jiang Weiand Latif Al-Hakim (2020). Disruptive Technology: Concepts, Methodologies, Tools,

and Applications  (pp. 1453-1483).

www.irma-international.org/chapter/the-effect-of-organizational-slack-on-innovation-performance/231251

Executing a Real-Time Response in an Agile Information System
Pankaj Chaudhary, James A. Rodgerand Micki Hyde (2019). Handbook of Research on Technology

Integration in the Global World (pp. 331-372).

www.irma-international.org/chapter/executing-a-real-time-response-in-an-agile-information-system/208805

Introduction to SDN and NFV
Himanshu Sahuand Misha Hungyo (2018). Innovations in Software-Defined Networking and Network

Functions Virtualization (pp. 1-25).

www.irma-international.org/chapter/introduction-to-sdn-and-nfv/198191

Combining Data Preprocessing Methods With Imputation Techniques for Software Defect

Prediction
Misha Kakkar, Sarika Jain, Abhay Bansaland P.S. Grover (2021). Research Anthology on Recent Trends,

Tools, and Implications of Computer Programming (pp. 1792-1811).

www.irma-international.org/chapter/combining-data-preprocessing-methods-with-imputation-techniques-for-software-

defect-prediction/261102

http://www.igi-global.com/chapter/lessons-from-practices-and-standards-in-safety-critical-and-regulated-sectors/192921
http://www.igi-global.com/chapter/lessons-from-practices-and-standards-in-safety-critical-and-regulated-sectors/192921
http://www.irma-international.org/chapter/design-and-optimizations-of-lattice-boltzmann-methods-for-massively-parallel-gpu-based-clusters/203087
http://www.irma-international.org/chapter/design-and-optimizations-of-lattice-boltzmann-methods-for-massively-parallel-gpu-based-clusters/203087
http://www.irma-international.org/chapter/the-effect-of-organizational-slack-on-innovation-performance/231251
http://www.irma-international.org/chapter/executing-a-real-time-response-in-an-agile-information-system/208805
http://www.irma-international.org/chapter/introduction-to-sdn-and-nfv/198191
http://www.irma-international.org/chapter/combining-data-preprocessing-methods-with-imputation-techniques-for-software-defect-prediction/261102
http://www.irma-international.org/chapter/combining-data-preprocessing-methods-with-imputation-techniques-for-software-defect-prediction/261102

