
1029

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 41

DOI: 10.4018/978-1-5225-3923-0.ch041

ABSTRACT

Open source software systems have poor or inexistent documentation and contributors are often scattered
or missing. The reuse-based composition and maintenance of open source software systems therefore
implies that program comprehension becomes a critical activity if all the embedded behavior is to be
preserved. Program comprehension has traditionally been addressed by reverse engineering techniques
which retrieve system design models such as class diagrams. These abstract representations provide a
key artifact during migration or evolution. However, this method may retrieve large complex class dia-
grams which do not ensure a suitable program comprehension. This chapter attempts to improve program
comprehension by providing a model-driven reverse engineering technique with which to obtain business
processes models that can be used in combination with system design models such as class diagrams.
The advantage of this approach is that business processes provide a simple system viewpoint at a higher
abstraction level and filter out particular technical details related to source code. The technique is fully
developed and tool-supported within an R&D project about global software development in which col-
laborate two universities and five companies. The automation of the approach facilitates its validation
and transference through an industrial case study involving two open source systems.

INTRODUCTION

Production and distribution models of software industry have been transformed by the open source
initiative (Open Source Initiative, 2011). While several commercial software companies produce and
distribute software in a centralized way, the open source model advocates developing software in peer
production by bartering and collaboration (Raymond, 1999).

Model-Driven Reverse
Engineering of Open

Source Systems
Ricardo Perez-Castillo

University of Castilla-La Mancha, Spain

Mario Piattini
University of Castilla-La Mancha, Spain

1030

Model-Driven Reverse Engineering of Open Source Systems
﻿

The main advantage of open source code is that it maximizes the reuse of software and reduces de-
velopment efforts and cost regarding software access. From an economical viewpoint, the open source
model consequently allows companies to save a lot of money (Glass, 2004).

The open source’s advantages encourage many companies to use open source code. Some software
development companies employ open source code as a basis for developing new systems. Other com-
panies offer maintenance support for open source systems. However, when developers or maintainers
are faced with open source code, they can find some program comprehension difficulties, which prevent
agility in companies (Kotlarsky, Oshri, Kumar, & Hillegersberg, 2008). These problems are owing to the
team-cross and distributed development nature of open source code (Rigby, German, & Storey, 2008).
This nature implies a poor, confuse (or even inexistent) documentation and there could be not many
expert people since a source code system is usually maintained for many different people throughout
its lifecycle (Costa, Santana, & Souza, 2009). Program comprehension is, therefore, extremely needed
when maintainers try to use open source code (even more than non-open source software systems).

Program comprehension is a key reverse engineering activity which automates the analysis of the
behavior of existing software systems (Canfora, Di Penta, & Cerulo, 2011; Maletic & Marcus, 2001).
This activity is so important because it allows knowing all the meaningful information to be effectively
used in the next reengineering stages (i.e., restructuring and forward engineering), which is aimed at
migrating or evolving the existing software system.

There is a wide variety of program comprehension techniques which are categorized in two approaches:
the static and dynamic analysis (T. Eisenbarth, Koschke, & Simon, 2001). Static analysis is based on the
compiler theory. These techniques syntactically analyze source code to recover structural elements (e.g.,
the system design based on class diagrams) or to obtain some metrics (e.g., number of lines of source
code, the cyclomatic complexity, the number of coupling methods, etc.). Moreover, dynamic analysis
focuses on the behavior of the system derived by its execution. This kind of techniques retrieves dead
code parts, detects execution bottlenecks, etc.

Traditional program comprehension techniques, however have some limitations. Firstly, traceability
between high-level representations and existing source code is error-prone, which makes it difficult
to restructure the abstract representations during the restructuring stage. Secondly, obtained abstract
representations have higher level of detail and complexity (Nugroho, 2009). This means that there are
several retrieved elements that might have been omitted to reduce the complexity of abstract representa-
tion and, therefore, improve its understandability (Gemino & Wand, 2005; Reijers & Mendling, 2010).

This chapter proposes a business-awareness program comprehension technique following model-
driven development principles. The proposal obtains business process models from an existing software
system. Business process models represent the sequence of coordinated business activities supported by
the system to achieve the common business goals of a company. Business processes, probably, are the
models at the highest abstraction level. This technique does not replace to other program comprehension
techniques (like those to obtain system design based on a set of class diagrams) but it complements them.
This chapter deals with the usage of both business process models and traditional class diagrams to get
a better comprehension. The main implication is that a better comprehension during reengineering of
open source systems leads to a better enterprise agility.

The proposal is aided by a tool especially developed to support the technique and facilitate its adop-
tion. The supporting tool makes it possible to conduct a case study involving some open source software
systems. The case study demonstrates that the main benefits of business-awareness program compre-
hension are that it hides some non-relevant details thus the understandability of open source software

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/model-driven-reverse-engineering-of-open-

source-systems/192912

Related Content

Introduction to OpenFlow
Mohit Kumar Jaiswal (2018). Innovations in Software-Defined Networking and Network Functions

Virtualization (pp. 52-71).

www.irma-international.org/chapter/introduction-to-openflow/198193

Exploring Cyber Security Vulnerabilities in the Age of IoT
Shruti Kohli (2018). Cyber Security and Threats: Concepts, Methodologies, Tools, and Applications (pp.

1609-1623).

www.irma-international.org/chapter/exploring-cyber-security-vulnerabilities-in-the-age-of-iot/203577

Composition of the Financial Logistic Costs of the IT Organizations Linked to the Financial

Market: Financial Indicators of the Software Development Project
Edilaine Rodrigues Soaresand Fernando Hadad Zaidan (2021). Research Anthology on Recent Trends,

Tools, and Implications of Computer Programming (pp. 70-87).

www.irma-international.org/chapter/composition-of-the-financial-logistic-costs-of-the-it-organizations-linked-to-the-

financial-market/261022

Fully Fuzzified Multi-Objective Stochastic Programming
 (2019). Multi-Objective Stochastic Programming in Fuzzy Environments (pp. 218-262).

www.irma-international.org/chapter/fully-fuzzified-multi-objective-stochastic-programming/223806

Lifecycles: Organizing Development Phases
 (2019). Software Engineering for Enterprise System Agility: Emerging Research and Opportunities (pp. 1-

32).

www.irma-international.org/chapter/lifecycles/207080

http://www.igi-global.com/chapter/model-driven-reverse-engineering-of-open-source-systems/192912
http://www.igi-global.com/chapter/model-driven-reverse-engineering-of-open-source-systems/192912
http://www.irma-international.org/chapter/introduction-to-openflow/198193
http://www.irma-international.org/chapter/exploring-cyber-security-vulnerabilities-in-the-age-of-iot/203577
http://www.irma-international.org/chapter/composition-of-the-financial-logistic-costs-of-the-it-organizations-linked-to-the-financial-market/261022
http://www.irma-international.org/chapter/composition-of-the-financial-logistic-costs-of-the-it-organizations-linked-to-the-financial-market/261022
http://www.irma-international.org/chapter/fully-fuzzified-multi-objective-stochastic-programming/223806
http://www.irma-international.org/chapter/lifecycles/207080

