
993

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  39

DOI: 10.4018/978-1-5225-3923-0.ch039

ABSTRACT

The increasing use of software is giving rise to the development of highly complex software systems. 
Further, software systems are required to be of high quality as a defect can have catastrophic effect on 
business as well as human life. Testing is defined as the process of executing a program with the inten-
tion of finding errors. Software testing is an expensive process of the software development life cycle 
consuming nearly 50% of development cost. Software testing aims not only to guarantee consistency in 
software specification but also to validate its implementation meeting user requirements. On the whole, it 
is observed that in general, errors in software systems set in at the early stages of the software development 
cycle (i.e. while gathering user requirements and deciding on specification of intended software). Even 
though formal specification in B and Z assures a provable system, its use has become less popular due 
to mathematical rigor. The Unified Modeling Language (UML), a semi-formal language with graphical 
notations consisting of various diagrams has caught software developers’ imaginations and, it has become 
popular in industry. UML, with its several diagrams, helps to develop a model of intended software, and 
the model behaviour is simulated and tested to the satisfaction of both developer as well as users. As a 
UML model includes specifications of different aspects of a software system through several diagrams, 
it is essential to maintain consistency among diagrams so that quality of the model is maintained, and 
through inconsistency checking and removal, the model moves toward completeness. The works reported 
in literature on this topic are reviewed here.

Consistency Checking of 
Specification in UML

P. G. Sapna
Coimbatore Institute of Technology, India

Hrushikesha Mohanty
University of Hyderabad, India

Arunkumar Balakrishnan
Coimbatore Institute of Technology, India



994

Consistency Checking of Specification in UML
﻿

INTRODUCTION

Specification is the genesis of a software system and maintaining its correctness is of prime concern for 
ensuring quality of system under development. Software system testing includes both checking specifica-
tion as well as its implementation. Formulating software specification (requirements gathering) precedes 
design. Both need a method for concrete as well as unambiguous specifications so that the testing team 
can trace implementation to requirements. Though formal specification with Z or B leads to provable 
systems, they are not commonly used due to mathematical rigour.

Responding to the want of a concrete as well as acceptable technique for professionals in industry, 
the Object Management Group defines the Unified Modelling Language (UML) as a general-purpose 
visual modeling language that is used to specify, visualize, construct and document artifacts of a software 
system. UML captures information about the static structure as well as dynamic behaviour of a system. 
The static structure defines objects as well as the relationship between objects that are part of the system 
implementation usually represented using use case, class and component diagram. Dynamic behaviour 
of the system is specified by the activity, sequence and state diagrams.

The semi-formal nature of UML has both advantages and disadvantages: the advantage primarily 
lies in its ease of use as well as understandability by various stakeholders of the system. Also, differ-
ent diagrams can be used to model varying aspects of the system. The same leads to difficulties in the 
form of maintaining completeness and consistency within and between UML diagrams. Specification 
based testing using UML needs consistent and complete UML diagrams. Again for testing, scenarios 
representing the working of intended system are extracted and studied for the purpose.

The focus of this chapter is to look at how the Unified Modeling Language aids in exploring the issue 
of consistency checking which forms the basis for testing. The Unified Modeling Language is discussed, 
with the use as well as advantages and disadvantages. Next, the issue of checking consistency in UML 
models is explored followed by a discussion on Model-driven Testing. Comparison of work in the area 
is presented followed by scope for research.

THE UNIFIED MODELING LANGUAGE

What Is UML?

The Unified Modeling Language (UML) is a general-purpose visual modeling language used to specify, 
visualize, construct, and document artifacts of a software system. Developed and propagated by the OMG 
group, UML can be used across all phases of the software development process (requirement, analysis 
and design, testing, and documentation). One or more diagrams can be used to represent the system. 
UML models can be classified as static models and dynamic models. Static models represent the struc-
ture of the system, whereas dynamic models are used to represent the behaviour of the system. Thus, a 
combination of the models may be used to suit the type and domain of the software to be developed. A 
UML diagram is not refined to provide all relevant aspects of an application. The semi-formal nature of 
UML leads to ambiguities in representation and interpretation of stated requirements. To overcome this, 
the Object Constraint Language (OCL) is used to write constraints on model elements. OCL expressions 
are used to specify invariants on classes, define pre- and post conditions on operations and methods, 



 

 

16 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/consistency-checking-of-specification-in-

uml/192910

Related Content

Theory Driven Modeling as the Core of Software Development
Janis Osisand Erika Nazaruka (Asnina) (2021). Research Anthology on Recent Trends, Tools, and

Implications of Computer Programming (pp. 88-107).

www.irma-international.org/chapter/theory-driven-modeling-as-the-core-of-software-development/261023

A Proposed Pragmatic Software Development Process Model
Sanjay Misra, M. Omorodion, Amit Mishraand Luis Fernandez (2018). Computer Systems and Software

Engineering: Concepts, Methodologies, Tools, and Applications  (pp. 607-622).

www.irma-international.org/chapter/a-proposed-pragmatic-software-development-process-model/192895

On More Generalized Fuzzy Interior Ideals in Semigroup
Muhammad Sajjadali Ali Khan (2020). Handbook of Research on Emerging Applications of Fuzzy Algebraic

Structures (pp. 151-173).

www.irma-international.org/chapter/on-more-generalized-fuzzy-interior-ideals-in-semigroup/247653

Archiving Nature’s Heartbeat Using Smartphones
Jinglan Zhang, Paul Roe, Binh Pham, Richard Mason, Michael Towseyand Jiro Sumitomo (2012).

Computer Engineering: Concepts, Methodologies, Tools and Applications  (pp. 1896-1912).

www.irma-international.org/chapter/archiving-nature-heartbeat-using-smartphones/62552

Measuring the Progress of a System Development
Marta (Plaska) Olszewskaand Marina Waldén (2012). Dependability and Computer Engineering: Concepts

for Software-Intensive Systems  (pp. 417-441).

www.irma-international.org/chapter/measuring-progress-system-development/55337

http://www.igi-global.com/chapter/consistency-checking-of-specification-in-uml/192910
http://www.igi-global.com/chapter/consistency-checking-of-specification-in-uml/192910
http://www.irma-international.org/chapter/theory-driven-modeling-as-the-core-of-software-development/261023
http://www.irma-international.org/chapter/a-proposed-pragmatic-software-development-process-model/192895
http://www.irma-international.org/chapter/on-more-generalized-fuzzy-interior-ideals-in-semigroup/247653
http://www.irma-international.org/chapter/archiving-nature-heartbeat-using-smartphones/62552
http://www.irma-international.org/chapter/measuring-progress-system-development/55337

