
806

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 32

DOI: 10.4018/978-1-5225-3923-0.ch032

ABSTRACT

The customization of Enterprise Information Systems (EIS) is expensive throughout its lifecycle, especially
across an enterprise-wide distributed application environment. The authors’ ongoing development of a
temporal meta-data framework for EIS applications seeks to minimize these issues with the application
model supporting the capability for end users to define their own supplemental or alternate application
logic as what they term Variant Logic (VL). VL can be applied to any existing model object, defined by
any authorized user, through modeling rather than coding, then executed by any user as an alternative
to the original application logic. VL is also preserved during automated application updates and can
also interoperate directly between similar model-based execution instances within a distributed execu-
tion environment, readily sharing the alternate logic segments. The authors also present an enhanced
pre-processing architecture that optimizes the execution of Logic Variants to the same execution order
of single path model logic.

INTRODUCTION

The great majority of software applications in practical use are the result of hard coded program logic
that has been compiled and deployed for use as part of the developer’s release schedule. Whether the
result of a developer producing a commercial application for widespread release or an internal develop-
ment team producing software to suit a specific internal purpose or process, the development path will
follow similar traditional processes.

Optimized and Distributed
Variant Logic for Model-

Driven Applications
Jon Davis

Curtin University, Australia

Elizabeth Chang
University of New South Wales, Australia & Australian Defence Force Academy, Australia

807

Optimized and Distributed Variant Logic for Model-Driven Applications

Externally developed third party software typically provides minimal scope for end users to greatly
influence the design and functionality of the application – such influence is usually minor and limited
to providing suggestions or advice to the developers, or via bug reporting feedback. While identified
bugs in a commercial application may be a priority and receive a higher level of attention in terms of
feedback from users and the response of developers it is more typical that user requests for change will
suffer long periods before they are introduced into production application releases, if ever.

Expensive alternatives that are often employed by organizations that use large scale third party En-
terprise Information System (EIS) or Enterprise Resource Planning (ERP) style solutions are to engage
the vendor or other authorized third parties to develop specific customizations for an organization’s
requirements to become embedded within a new localized version of the application to support that
determination.

Internally developed software may often offer some “time to delivery” opportunities in effecting new
desired functionality due to a potentially higher focus on satisfying the organization’s specific require-
ments. The overall cost effectiveness of internal development vs. the use of third party applications with
customizations requires a suitable business case for each organization.

In either case, any ongoing customizations or internal development efforts over the lifecycle of the
application can be a significant additional cost. An alternative option to choose to utilize commercial-
off-the-shelf applications and limit modifications can minimize direct costs but impose internal organi-
zational workflow and inefficiency costs that can also become significant and need to be identified and
assessed as part of an overall business case to assist in solution decision making.

The overall lifecycle costs of maintaining an EIS style application are further compounded when ac-
counting for the effort and costs of all major version upgrades, updates, patches and field fixes that may
be released by the application vendor. These costs can be significantly magnified when the organization
has employed customizations as they need to be reviewed and tested and may require re-engineering
using traditional hard coding techniques during each update event to ensure compatibility. Where or-
ganizations often choose to defer or skip upgrades to reduce these update costs and any associated ap-
plication downtime they still incur internal organization inefficiency costs due to delaying the uptake of
the otherwise provided updated application benefits to their organization. A suitable review should be
conducted to assess these effects.

Our ongoing development of a temporal meta-data framework (Davis 2004) for EIS style applications
seeks to overcome these issues as an example of the model driven engineering paradigm. A meta-data
EIS (MDEIS) application is fully defined and stored as a model, without the need for application coding,
for direct execution by an associated runtime engine.

How do we define MDEIS applications? Firstly, we consider the class of EIS applications that we
summarize as visual and interactive applications that prompt for the entry of appropriate transaction data
and user events from the application users, use rules based workflow sequences and actions and utilize
database transactions in a (relational) database environment to complete the actions. They are typically
structurally repetitive and tend to be a technically simpler subset of possible software applications.

They generally consist of EIS and Enterprise Resource Planning (ERP) style applications such as;
logistics, human resource, payroll, project costing, accounting, customer relationship management and
other general database applications. The collective application design requirements are stored and avail-
able in a suitable meta-model structure and supported by an execution framework that will allow the EIS
application models to be executed automatically and directly from the model, thus the transformation
to the MDEIS application.

48 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/optimized-and-distributed-variant-logic-for-

model-driven-applications/192902

Related Content

Security Issues in Distributed Computing System Models
Ghada Farouk Elkabbanyand Mohamed Rasslan (2018). Cyber Security and Threats: Concepts,

Methodologies, Tools, and Applications (pp. 381-418).

www.irma-international.org/chapter/security-issues-in-distributed-computing-system-models/203516

Taming of ‘Openness' in Software Innovation Systems
Mehmet Gencerand Beyza Oba (2021). Research Anthology on Recent Trends, Tools, and Implications of

Computer Programming (pp. 1163-1178).

www.irma-international.org/chapter/taming-of-openness-in-software-innovation-systems/261074

Cultural Tourism O2O Business Model Innovation: A Case Study of CTrip
Chao Luand Sijing Liu (2020). Disruptive Technology: Concepts, Methodologies, Tools, and Applications

(pp. 406-423).

www.irma-international.org/chapter/cultural-tourism-o2o-business-model-innovation/231197

Formal Stepwise Development of Scalable and Reliable Multiagent Systems
Denis Grotsev, Alexei Iliasovand Alexander Romanovsky (2012). Dependability and Computer Engineering:

Concepts for Software-Intensive Systems (pp. 58-74).

www.irma-international.org/chapter/formal-stepwise-development-scalable-reliable/55324

Lattice Boltzmann Method for Sparse Geometries: Theory and Implementation
Tadeusz Tomczak (2018). Analysis and Applications of Lattice Boltzmann Simulations (pp. 152-187).

www.irma-international.org/chapter/lattice-boltzmann-method-for-sparse-geometries/203089

http://www.igi-global.com/chapter/optimized-and-distributed-variant-logic-for-model-driven-applications/192902
http://www.igi-global.com/chapter/optimized-and-distributed-variant-logic-for-model-driven-applications/192902
http://www.irma-international.org/chapter/security-issues-in-distributed-computing-system-models/203516
http://www.irma-international.org/chapter/taming-of-openness-in-software-innovation-systems/261074
http://www.irma-international.org/chapter/cultural-tourism-o2o-business-model-innovation/231197
http://www.irma-international.org/chapter/formal-stepwise-development-scalable-reliable/55324
http://www.irma-international.org/chapter/lattice-boltzmann-method-for-sparse-geometries/203089

