
396

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  16

DOI: 10.4018/978-1-5225-3923-0.ch016

ABSTRACT

The adoption of Model-Driven Development (MDD) is increasing and it is widely recognized as an 
important approach for building software systems. In addition to traditional development process mod-
els, an MDD process requires the selection of metamodels and mapping rules for the generation of the 
transformation chain which produces models and application code. However, existing support tools 
and transformation engines for MDD do not address different kinds of software process activities, such 
as application modeling and testing, to guide the developers. Furthermore, they do not enable process 
modeling nor the (semi) automated execution of activities during process enactment. MoDErNE (Model 
Driven Process-Centered Software Engineering Environment) uses process-centered software engineering 
environment concepts to improve MDD process specification and enactment by using a metamodeling 
foundation. This chapter presents model driven development concept issues and the MoDErNE approach 
and environment. MoDErNE aims to facilitate MDD process specification and enactment.

Supporting Model-
Driven Development:

Key Concepts and Support Approaches

Rita Suzana Pitangueira Maciel
Federal University of Bahia, Brazil

Ana Patrícia F. Magalhães Mascarenhas
Federal University of Bahia, Brazil

Ramon Araújo Gomes
Federal University of Bahia, Brazil

João Pedro D. B. de Queiroz
Federal University of Bahia, Brazil



397

Supporting Model-Driven Development
﻿

INTRODUCTION

Model Driven Development (MDD) is an approach that is primarily concerned with reducing the gap 
between problem and solution spaces. More specifically, the application of MDD relies on software 
implementation domains through the use of technologies that support systematic transformation of 
problem-level abstraction in software implementations (France & Rumpe, 2007). System models are 
not only used for system documentation, but they actually serve as a basis for the implementation phase. 
Each activity in the development process requires a number of input models that produce further models 
as output. This way the development of an application can be viewed as a set of transformations that 
lead to the final system. MDD has changed not only the way systems are built but also the way they are 
tested (Mussa et al., 2009). Model Driven Testing (MDT) (Blaker et al., 2007) is an approach based on 
MDD in which tests can be generated from development models in an automated way through the use of 
transformations. One of the most well-known initiatives in this scenario is Model-Driven Architecture 
(MDA) proposed by the Object Management Group (OMG) (OMG, 2003). MDA relies on several OMG 
standards to apply MDD concepts. As MDA is an MDD realization, in this text we use only the MDD 
acronym for software processes that use this approach, including those which follow OMG standards.

Unlike traditional development process models (Rational Unified Process (RUP), eXtreme Program-
ming (XP), Open/UP, etc.), an MDD process requires the selection of metamodels and mapping rules 
for the generation of the transformation chain which produces models and application code. In this 
context, if modeling and transformation tasks are not properly performed, the desired final code will not 
be reached. Existing research in MDD practice has revealed the importance of software processes and 
suitable tools, concluding that they are crucial for the use of the MDD approach in industry (Hutchinson, 
Rouncefield, & Whittle, 2011).

The techniques to apply Model-Driven Engineering (MDE) correctly depend on tool support and 
integration in the software process project (Hutchinson, Rouncefield, & Whittle, 2011; Hutchinson et 
al., 2011). Many tools have been designed to support MDD. These environments usually have a specific 
focus on a transformation strategy or transformation engine in order to automatically generate models, 
codes and test cases from a variety of models. However, current MDD supporting tools are basically 
interested in defining and executing transformations which produce code and deployment artifacts from 
models (e.g. AndroMDA, BluAge and others) for a specific part of the software life cycle or for a specific 
domain. Indeed, other activities in a software process are usually not considered. They do not focus on 
the software process specification, neglecting support for the integration of different process specification 
activities into the software development process phases. On the other hand, tools for process modeling 
and specification (e.g. Eclipse Platform Foundation – EPF) lack integration to modeling tools and model 
transformation engines. This scenario does not help software engineers who want to use MDD as a main 
software development approach or to adapt existing software processes.

There have been attempts to integrate process design and enactment (Bispo et al., 2010). Environ-
ments called PSEEs (Process-Centered Software Engineering Environment) with different characteris-
tics, features and contexts (Alves, Machado, & Ramalho, 2008; Baker et al., 2007) have been proposed. 
However, most of them have shortcomings regarding process enactment. Some of them are enactable 
but proprietary and use a non-standard Process Modeling Language (PML) (Magalhães et al., 2011). 
In some cases they have a restricted focus on the management view of a software development process 
alone (Gomes et al., 2011). PSEE concepts can be applied to support the enactment peculiarities of an 



 

 

35 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/supporting-model-driven-development/192886

Related Content

Managing Tacit Knowledge to Improve Software Processes
Alberto Heredia, Javier García-Guzmán, Fuensanta Medina-Domínguezand Arturo Mora-Soto (2018).

Computer Systems and Software Engineering: Concepts, Methodologies, Tools, and Applications  (pp.

1567-1585).

www.irma-international.org/chapter/managing-tacit-knowledge-to-improve-software-processes/192936

Partitioning of Complex Networks for Heterogeneous Computing
 (2018). Creativity in Load-Balance Schemes for Multi/Many-Core Heterogeneous Graph Computing:

Emerging Research and Opportunities  (pp. 88-112).

www.irma-international.org/chapter/partitioning-of-complex-networks-for-heterogeneous-computing/195893

Teaching Software Engineering Through a Collaborative Game
Elizabeth Suescún Monsalve, Allan Ximenes Pereiraand Vera Maria B. Werneck (2018). Computer

Systems and Software Engineering: Concepts, Methodologies, Tools, and Applications  (pp. 874-895).

www.irma-international.org/chapter/teaching-software-engineering-through-a-collaborative-game/192905

Shaping Competitive Strategies for the Computer Industry
Shameem Akhter, Nayem Rahman, Mahmud Ullahand Mohammad Nirjhar Rahman (2019). Handbook of

Research on Technology Integration in the Global World (pp. 189-207).

www.irma-international.org/chapter/shaping-competitive-strategies-for-the-computer-industry/208799

From Virtual to Physical Problem Solving in Coding: A Comparison on Various Multi-Modal

Coding Tools for Children Using the Framework of Problem Solving
Kening Zhu (2021). Research Anthology on Recent Trends, Tools, and Implications of Computer

Programming (pp. 677-694).

www.irma-international.org/chapter/from-virtual-to-physical-problem-solving-in-coding/261049

http://www.igi-global.com/chapter/supporting-model-driven-development/192886
http://www.irma-international.org/chapter/managing-tacit-knowledge-to-improve-software-processes/192936
http://www.irma-international.org/chapter/partitioning-of-complex-networks-for-heterogeneous-computing/195893
http://www.irma-international.org/chapter/teaching-software-engineering-through-a-collaborative-game/192905
http://www.irma-international.org/chapter/shaping-competitive-strategies-for-the-computer-industry/208799
http://www.irma-international.org/chapter/from-virtual-to-physical-problem-solving-in-coding/261049

