
293

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

DOI: 10.4018/978-1-5225-3923-0.ch013

ABSTRACT

The first part of this chapter reviews the origin of knowware-based software engineering. It originates
from the authors’ experiences in finding new techniques for knowledge-based software engineering while
performing PROMIS, a continuing project series from the 1990s. The key point of PROMIS is to generate
applications automatically by separating the development of domain knowledge from that of software
architecture, with an important innovation of acquiring and summarizing domain knowledge automatically
based on the pseudo-natural language understanding techniques. However, during PROMIS develop-
ment, the authors did not find an appropriate form for the separated domain knowledge. The second part
of the chapter briefly describes how the authors came to the concept of knowware. They stated that the
essence of knowware is its capacity as a commercialized form of domain knowledge. It is also the third
major component of IT after hardware and software. The third part of the chapter introduces the basic
concepts of knowware and knowware engineering. Three life cycle models of knowware engineering
and the design of corresponding knowware implementations are given. The fourth part of the chapter
introduces object-oriented mixware engineering. In the fifth part of the chapter, two recent applications
of knowware technique regarding smart room and Web search are reported. As a further development
of PROMIS, the sixth part of the chapter discusses knowware-based redesign of its framework. In the
seventh part of the chapter, the authors discuss automatic application generation and domain knowledge
modeling on the J2EE platform, which combines techniques of PROMIS, knowware, and J2EE, and the
development and deployment framework (i.e. PROMIS/KW**).

Knowware-Based
Software Engineering:

An Overview of Its Origin, Essence, Core
Techniques, and Future Development

RuQian Lu
Chinese Academy of Sciences, China & Peking University, China

Zhi Jin
Peking University, China & Chinese Academy of Sciences, China

294

Knowware-Based Software Engineering
﻿

1. EXPERIMENT OF SEPARATING APPLICATION KNOWLEDGE
DEVELOPMENT FROM SOFTWARE DEVELOPMENT: THE ORIGIN

The practice of software engineering shows that most failures of software development are caused by
failure of requirement analysis, and the reason for that falls upon lack of good cooperation between users
and software engineers. Users, usually being unable to exactly and clearly state their requirements, often
change their requirements freely during the process of software developing, which makes it difficult for
software engineers to perform a proper requirement analysis and to guarantee the accomplishment of
the developing job successfully.

At present, requirements analysis researchers and practitioners use either formal methods or semi-
formal methods with different requirement specification languages. The advantage of formal methods
is that they provide strict guidance to software engineers or programmers for writing requirement speci-
fication with the assumption that user requirement is complete and precise (Chakraborty et al., 2012;
Vassiliou et al., 1990; Mulopoulos et al., 1999; Kundu, 2007; Yu, 1997; Wang et. al., 2001; Castro et
al., 2002; Fuxman et al., 2004); otherwise they cannot give any help, no matter how perfect they are in
theory. One of the solutions to this problem is involving users into the process of software development
as much as possible, so that they can realize the differences between the software under development
and that they really need, or between the drafted requirement specification and their real requirements.
In this way, users can find the software design deficiencies at the earliest time. However, because of the
big difference between the knowledge backgrounds of software engineers and users, formal methods
often cause serious problems of bad communication between them. The changing nature of requirements
during software design and development process makes the situation even worse.

We believe that it is not enough to only attract users to join the development process, but we should
also give the key of developing software to users, whenever it is possible. That is to let users themselves
define, design, develop, maintain and modify their software. This is possible for some kinds of soft-
ware, for example, management information system (Mansour et al., 2009; Jarke et al., 1990; Engels
et al., 1995; Engels et al., 1992; Vilkomir et al., 2004; Bhuiyan et al., 2007; Monroe et. al., 1996). To
achieve this goal, we must remove from users the burden of learning and mastering the knowledge about
software development and also the burden of requirement analysis with formal methods. One way for
achieving this is using knowledge. As a result, we proposed a knowledge-based software engineering
method, KISSME (Knowledge Intensive Software System Manufacture Engineering), and developed
a tool for supporting this method that is named as PROMIS (PROtotyping MIS)(Lu et al., 1994, 1995,
1996 (journal), 1996, 1997 (Spain), 1997, 1998, 1998 (journal), 1999, 2000, 2000 (book), 2002, 2003,
2003 (journal); Jin et al., 2003). The essence of this method is that by using a large knowledge base to
support software development, users do not need to master knowledge of software development or re-
quirements analysis of related domain. This approach is also made possible by a requirement description
language BIDL (Business Information Description Language). This language is in pseudo-natural style
and contains only expressions and terminology of the application domain, without any jargon from the
software engineering area. Users who are not software professionals can use this language to describe
their business. This description will then be transformed into the final program under the support of a
domain knowledge base throughout the whole lifecycle of application development.

The following process has been used to design a pseudo natural language like BIDL:

29 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/knowware-based-software-engineering/192883

Related Content

Business Model Innovation in the Agri-Food Sector
Joakim Tell, Maya Hoveskog, Pia Ulvenblad, Per-Ola Ulvenblad, Henrik Barthand Jenny Ståhl (2020).

Disruptive Technology: Concepts, Methodologies, Tools, and Applications (pp. 2107-2121).

www.irma-international.org/chapter/business-model-innovation-in-the-agri-food-sector/231282

Software as a Service, Semantic Web, and Big Data: Theories and Applications
Kijpokin Kasemsap (2021). Research Anthology on Recent Trends, Tools, and Implications of Computer

Programming (pp. 1179-1201).

www.irma-international.org/chapter/software-as-a-service-semantic-web-and-big-data/261075

The Business Transformation Framework for Managers in Business Innovation Transformation

Projects: Business Architecture Managerial Recommendation
Antoine Tradand Damir Kalpi (2020). Disruptive Technology: Concepts, Methodologies, Tools, and

Applications (pp. 332-356).

www.irma-international.org/chapter/the-business-transformation-framework-for-managers-in-business-innovation-

transformation-projects/231194

SaaS Requirements Engineering for Agile Development
Asif Qumer Gilland Deborah Bunker (2013). Agile and Lean Service-Oriented Development: Foundations,

Theory, and Practice (pp. 64-93).

www.irma-international.org/chapter/saas-requirements-engineering-agile-development/70730

Antipasti: Solving the Software Puzzles
 (2019). Software Engineering for Enterprise System Agility: Emerging Research and Opportunities (pp.

108-130).

www.irma-international.org/chapter/antipasti/207084

http://www.igi-global.com/chapter/knowware-based-software-engineering/192883
http://www.irma-international.org/chapter/business-model-innovation-in-the-agri-food-sector/231282
http://www.irma-international.org/chapter/software-as-a-service-semantic-web-and-big-data/261075
http://www.irma-international.org/chapter/the-business-transformation-framework-for-managers-in-business-innovation-transformation-projects/231194
http://www.irma-international.org/chapter/the-business-transformation-framework-for-managers-in-business-innovation-transformation-projects/231194
http://www.irma-international.org/chapter/saas-requirements-engineering-agile-development/70730
http://www.irma-international.org/chapter/antipasti/207084

