
1240

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 52

DOI: 10.4018/978-1-5225-3422-8.ch052

ABSTRACT

Applications that operate on the Web often interact with a database to persistently store data. For ex-
ample, if an e-commerce application needs to store a user’s credit card number, they typically retrieve
the data from a Web form (filled out by the customer) and pass that data to some application or script
running on the company’s server. The dominant language that these database queries are written in is
SQL, the Structured Query Language. Web applications can be vulnerable to a malicious user crafting
input that gets executed on the server. One instance of this is an attacker entering Structured Query
Language (SQL) commands into input fields, and then this data being used directly on the server by a
Web application to construct a database query. The result could be an attacker’s gaining control over
the database and possibly the server. Care should be taken to validate user input on the server side
before user data is used.

INTRODUCTION

Web applications are becoming more sophisticated and increasingly technically complex. They range from
dynamic Internet and intranet portals, such as e-commerce sites and partner extranets, to HTTP-delivered
enterprise applications such as document management systems and ERP applications. The availability of
these systems and the sensitivity of the data that they store and process are becoming critical to almost
all major businesses, not just those that have online e- commerce stores. Web applications and their sup-
porting infrastructure and environments use diverse technologies and can contain a significant amount
of modified and customized code. The very nature of their feature-rich design and their capability to
collate, process, and disseminate information over the Internet or from within an intranet makes them a
popular target for attack. Also, since the network security technology market has matured and there are
fewer opportunities to breach information systems through network based vulnerabilities, hackers are
increasingly switching their focus to attempting to compromise applications.

Prevention of SQL Injection
Attacks in Web Browsers

Kannan Balasubramanian
Mepco Schlenk Engineering College, India

1241

Prevention of SQL Injection Attacks in Web Browsers

SQL injection is an attack in which SQL code is inserted or appended into application/user input
parameters that are later passed to a back-end SQL server for parsing and execution (Clarke, 2009; Pauli,
2013). Any procedure that constructs SQL statements could potentially be vulnerable, as the diverse
nature of SQL and the methods available for constructing it provide a wealth of coding options. The
primary form of SQL injection consists of direct insertion of code into parameters that are concatenated
with SQL commands and executed. A less direct attack injects malicious code into strings that are des-
tined for storage in a table or as metadata. When the stored strings are subsequently concatenated into
a dynamic SQL command, the malicious code is executed. When a Web application fails to properly
sanitize the parameters which are passed to dynamically created SQL statements (even when using
parameterization techniques) it is possible for an attacker to alter the construction of back-end SQL
statements. When an attacker is able to modify an SQL statement, the statement will execute with the
same rights as the application user; when using the SQL server to execute commands that interact with
the operating system, the process will run with the same permissions as the component that executed
the command (e.g., database server, application server, or Web server), which is often highly privileged.

To illustrate this, let’s return to the previous example of a simple online retail store. If you remember,
we attempted to view all products within the store that cost less than $100, by using the following URL.

This time, however, you are going to attempt to inject your own SQL commands by appending them
to the input parameter val. You can do this by appending the string ‘OR ‘1’= ‘1 to the URL:

 http://www.victim.com/products.php?val=100’ OR ‘1’=‘1

This time, the SQL statement that the PHP script builds and executes will return all of the products
in the database regardless of their price. This is because you have altered the logic of the query. This
happens because the appended statement results in the OR operand of the query always returning true,
that is, 1 will always be equal to 1. Here is the query that was built and executed:

SELECT *

FROM ProductsTbl

WHERE Price < ‘100.00’ OR ‘1’=‘1’

ORDER BY ProductDescription;

The preceding simple example demonstrates how an attacker can manipulate a dynamically created
SQL statement that is formed from input that has not been validated or encoded to perform actions that the
developer of an application did not foresee or intend. The example, however, perhaps does not illustrate
the effectiveness of such a vulnerability; after all, we only used the vector to view all of the products in
the database, and we could have legitimately done that by using the application’s functionality as it was
intended to be used in the first place. What if the same application can be remotely administered using
a content management system (CMS)? A CMS is a Web application that is used to create, edit, manage,
and publish content to a Web site, without having to have an in-depth understanding of the ability to
code in HTML. You can use the following URL to access the CMS application:

http://www.victim.com/cms/login.php?username=foo&password=bar

33 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/prevention-of-sql-injection-attacks-in-web-

browsers/188254

Related Content

Jif-Based Verification of Information Flow Policies for Android Apps
Lina M. Jimenez, Martin Ochoaand Sandra J. Rueda (2017). International Journal of Secure Software

Engineering (pp. 28-42).

www.irma-international.org/article/jif-based-verification-of-information-flow-policies-for-android-apps/179642

Open Source Software Adoption: Anatomy of Success and Failure
Brian Fitzgerald (2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp.

1675-1698).

www.irma-international.org/chapter/open-source-software-adoption/29471

Predicting OSS Development Success: A Data Mining Approach
Uzma Rajaand Marietta J. Tretter (2011). International Journal of Information System Modeling and Design

(pp. 27-48).

www.irma-international.org/article/predicting-oss-development-success/58644

The Incremental Commitment Spiral Model for Service-Intensive Projects
Supannika Koolmanojwong, Barry Boehmand Jo Ann Lane (2014). Software Design and Development:

Concepts, Methodologies, Tools, and Applications (pp. 2142-2162).

www.irma-international.org/chapter/incremental-commitment-spiral-model-service/77794

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector
Gabor Laszlo (2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp. 1577-

1591).

www.irma-international.org/chapter/issues-aspects-open-source-software/29465

http://www.igi-global.com/chapter/prevention-of-sql-injection-attacks-in-web-browsers/188254
http://www.igi-global.com/chapter/prevention-of-sql-injection-attacks-in-web-browsers/188254
http://www.irma-international.org/article/jif-based-verification-of-information-flow-policies-for-android-apps/179642
http://www.irma-international.org/chapter/open-source-software-adoption/29471
http://www.irma-international.org/article/predicting-oss-development-success/58644
http://www.irma-international.org/chapter/incremental-commitment-spiral-model-service/77794
http://www.irma-international.org/chapter/issues-aspects-open-source-software/29465

