
988

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 43

DOI: 10.4018/978-1-5225-3422-8.ch043

ABSTRACT

Customizing Enterprise Information Systems (EIS) scale applications can be very expensive, also incur-
ring additional costs during their lifecycle when customizations may need to be re-engineered to suit each
EIS upgrade. The ongoing development of a temporal meta-data framework for EIS applications seeks to
overcome these issues, with the application logic model supporting the capability for end users to define
their own supplemental or replacement application logic meta-data, as what the authors term Variant
Logic, to become a variation of the core application logic. Variant Logic can be applied to any defined
model object whether visual objects, logical processing objects, or data structures objects. Variant Logic
can be defined by any authorized user, through modeling rather than coding, executed by any user as an
alternative to the original application logic, and is available for immediate execution by the framework
runtime engine. Variant Logic is also preserved during automated meta-data application updates.

INTRODUCTION

The great majority of software applications in practical use are the result of hard coded program logic
that has been compiled and deployed for use as part of the developer’s release schedule. Whether the
result of a developer producing a commercial application for widespread release or an internal develop-
ment team producing software to suit a specific internal purpose or process, the development path will
follow similar traditional processes.

Externally developed third party software typically provides minimal scope for end users to greatly
influence the design and functionality of the application – such influence is usually minor and limited
to providing suggestions or advice to the developers, or via bug reporting feedback. While identified
bugs in a commercial application may be a priority and receive a higher level of attention in terms of

Variant Logic for Model
Driven Applications

Jon Davis
Curtin University, Australia

Elizabeth Chang
Curtin University, Australia

989

Variant Logic for Model Driven Applications

feedback from users and the response of developers it is more typical that user requests for change will
suffer long periods before they are introduced into production application releases, if ever.

Expensive alternatives that are often employed by organizations that use large scale third party Enter-
prise Information System or Enterprise Resource Planning (ERP) style solutions are to engage the vendor
or other authorized third parties to develop specific customizations for an organization’s requirements
to become embedded within a new localized version of the application to support that determination.

Internally developed software may often offer some “time to delivery” opportunities in effecting new
desired functionality due to a potentially higher focus on satisfying the organization’s specific require-
ments. The overall cost effectiveness of internal development vs. the use of third party applications with
customizations requires a suitable business case for each organization.

In either case, any ongoing customizations or internal development efforts over the lifecycle of the
application can be a significant additional cost. An alternative option to choose to utilize commercial-
off-the-shelf applications and limit modifications can minimize direct costs but impose internal organi-
zational workflow and inefficiency costs that can also become significant and need to be identified and
assessed as part of an overall business case to assist in solution decision making.

The overall lifecycle costs of maintaining an EIS style application are further compounded when ac-
counting for the effort and costs of all major version upgrades, updates, patches and field fixes that may
be released by the application vendor. These costs can be significantly magnified when the organization
has employed customizations as they need to be reviewed and tested and may require re-engineering
using traditional hard coding techniques during each update event to ensure compatibility. Where or-
ganizations often choose to defer or skip upgrades to reduce these update costs and any associated ap-
plication downtime they still incur internal organization inefficiency costs due to delaying the uptake of
the otherwise provided updated application benefits to their organization. A suitable review should be
conducted to assess these effects.

Our ongoing development of a temporal meta-data framework (Davis 2004) for EIS style applications
seeks to overcome these issues as an example of the model driven engineering paradigm. A meta-data
EIS (MDEIS) application is fully defined and stored as a model, without the need for application coding,
for direct execution by an associated runtime engine.

How do we define MDEIS applications? Firstly, we consider the class of EIS applications that we
summarize as visual and interactive applications that prompt for the entry of appropriate transaction data
and user events from the application users, use rules based workflow sequences and actions and utilize
database transactions in a (relational) database environment to complete the actions. They are typically
structurally repetitive and tend to be a technically simpler subset of possible software applications. They
generally consist of EIS and Enterprise Resource Planning (ERP) style applications such as; logistics,
human resource, payroll, project costing, accounting, customer relationship management and other
general database applications. The collective application design requirements are stored and available
in a suitable meta-model structure and supported by an execution framework that will allow the EIS
application models to be executed automatically and directly from the model, thus the transformation to
the MDEIS application. The temporal aspect of the model represents the transaction tracking nature of
the application data and meta-data to permit rollback or rollforward through any time period, regardless
of the application logic version (the correct state of which is always maintained).

A specific objective of the framework is to also provide the capability for any end user to define and
create their own application logic to supplement or replace a vendor’s pre-defined MDEIS application

33 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/variant-logic-for-model-driven-

applications/188244

Related Content

An Agile Architecture for a Legacy Enterprise IT System
Chung-Yeung Pang (2018). Application Development and Design: Concepts, Methodologies, Tools, and

Applications (pp. 155-190).

www.irma-international.org/chapter/an-agile-architecture-for-a-legacy-enterprise-it-system/188206

Simulation for Business Engineering of Electronic Markets
Marijn Janssenand Henk G. Sol (2002). Optimal Information Modeling Techniques (pp. 163-169).

www.irma-international.org/chapter/simulation-business-engineering-electronic-markets/27834

Where to Integrate Security Practices on DevOps Platform
Hasan Yasarand Kiriakos Kontostathis (2016). International Journal of Secure Software Engineering (pp.

39-50).

www.irma-international.org/article/where-to-integrate-security-practices-on-devops-platform/176400

Formal Modeling and Specification of Design Patterns Using RTPA
Yingxu Wangand Jian Huang (2009). Software Applications: Concepts, Methodologies, Tools, and

Applications (pp. 635-647).

www.irma-international.org/chapter/formal-modeling-specification-design-patterns/29413

From Requirements to Java Code: An Architecture-Centric Approach for Producing Quality

Systems
Antonio Bucchiarone, Davide Di Ruscio, Henry Mucciniand Patrizio Pelliccione (2009). Model-Driven

Software Development: Integrating Quality Assurance (pp. 263-301).

www.irma-international.org/chapter/requirements-java-code/26833

http://www.igi-global.com/chapter/variant-logic-for-model-driven-applications/188244
http://www.igi-global.com/chapter/variant-logic-for-model-driven-applications/188244
http://www.irma-international.org/chapter/an-agile-architecture-for-a-legacy-enterprise-it-system/188206
http://www.irma-international.org/chapter/simulation-business-engineering-electronic-markets/27834
http://www.irma-international.org/article/where-to-integrate-security-practices-on-devops-platform/176400
http://www.irma-international.org/chapter/formal-modeling-specification-design-patterns/29413
http://www.irma-international.org/chapter/requirements-java-code/26833

