
 D

2031

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Data Mining and Databases

DOI: 10.4018/978-1-5225-2255-3.ch176

Query Languages for Graph Databases

INTRODUCTION

One can find more or less complicated definitions, 
but one could say that a database is an organized 
collection of data. It is assumed that a database 
is stored as files on a computer. Actually, any list 
of items on a paper could be called a collection of 
data as well, but today it is assumed that databases 
are stored digitally.

In order to create a text file, some text proces-
sor should be used (for example, Word, Wordpad, 
Notepad, etc.). In the same way, in order to create 
a database, some Database Management System 
(DBMS) should be used. Many systems are 
available, including Oracle, DB2, SQL Server, 
PostgreSQL, MySQL, Microsoft Access, Neo4j, 
MongoDB, etc. The majority of DBMSs are rela-
tional in nature. “Relational” means that the main 
structure that is used to store data is a relation, 
or as users usually call it, a table. One table con-
tains zero or more rows. The idea of storing data 
into relations (tables) is quite old and relational 
databases have been used for over 40 years. Rela-
tions store data in a compact and organized way 
and redundancy and anomalies that are caused by 
redundancy are usually avoided. The relational 
model was introduced by dr. E. F. T. Codd. in the 
late 1960s and early 1970s.

In order to use a database management system, 
one has to be familiar with Structured Query 
Language (SQL). SQL is a standardized language 
that is supported by all major Relational DBMS 
software vendors (it does not belong to any vendor 
in particular). SQL contains many statements to 
work with data. The CREATE statement is used 
to create different objects in the database, as well 
as the database itself. The INSERT, UPDATE and 

DELETE statements are used for data manipula-
tion purposes. In order to retrieve data from one 
or more tables, SELECT statement is used. Many 
other, complex statements are available as well, 
but for our purposes, we can skip the details. Each 
DBMS has some (graphical) client program (one 
or more) that can be used to write queries (in SQL) 
in order to work with the database (for example, 
phpMyAdmin, Workbench, Navicat, pgAdmin, 
SQL Server Management Studio, etc.). More on 
SQL can be found in (Rabuzin, 2011, 2014).

Relational databases are mature technology; 
many DBMSs are available, SQL is standardized, 
etc. But in recent years things have changed. 
Extremely large amounts of unstructured and/or 
semi structured data come from different sources 
and relational databases can not cope with such 
large amounts of data in a satisfactory manner. 
Furthermore, certain queries require too much 
time to execute and sometimes such behavior is 
not acceptable. Because of this new types of da-
tabases are being invented (and used) on a daily 
basis, especially NoSQL technologies, which are 
becoming more and more important.

The word NoSQL had different meanings 
in the past (for example, No to SQL), but today 
people usually mean “Not Only SQL”. When one 
talks about NoSQL databases, several different 
types can be distinguished (some authors believe 
that XML databases should be included as well, 
as well as some other types, but it doesn’t make 
much difference):

• Document oriented databases,
• Column oriented databases,
• Key Value databases,
• Graph databases.

Kornelije Rabuzin
University of Zagreb, Croatia



Query Languages for Graph Databases

2032

Document oriented databases, like MongoDB, 
do not use tables to store data. Instead, they 
use collections that store documents. Since one 
document contains all the data that are relevant, 
foreign keys are not used (at least not in a form 
that one is used to in relational databases). Docu-
ment databases can use references to link between 
documents, but usually all the referenced data 
could/should be included within the document. 
So basically, collections would correspond to 
tables and documents would correspond to rows. 
It is important to have in mind that the document 
schema is flexible and each document within the 
collection can have different schema.

Column oriented databases use tables as well, 
but data is organized and stored differently. Unlike 
relational databases that store together values that 
belong to a single row (usually several rows are 
stored within a single unit of storage), column 
oriented databases store together values (for 
different rows) that belong to the same column. 
This is easy to justify. Namely, when one poses 
a query, in most cases one doesn’t need all the 
columns in the table. Instead, only a few columns 
are usually selected. In data warehouses dimension 
tables can have very large number of columns. 
So queries that are posed on column oriented 
databases should be faster because less data has 
to be read from the hard disk drive since column 
data is stored together (and not values that belong 
to a single row).

Key Value (KV) databases store values for 
defined keys. Values can be simple as well as 
complex. Key value databases may look trivial, 
but sometimes they can be very useful.

For now it is important to have in mind that 
graph databases represent an interesting type as 
well, and because of that they will be discussed 
later. Namely, the main idea of this article is to 
present languages for graph databases so they 
have to be explored more thoroughly.

Although relational databases are the most 
commonly used, NoSQL databases have great 
potential. However, one has to have in mind that 
other database types (http://db-engines.com/en/) 
do exists (object oriented databases, content store, 

event store, etc.), but they are not important for 
this research. So many different database types 
are available and they can be used for different 
purposes; one can store company data, images, 
sound, biometric data, etc. But the type that one 
plans to use depends on one’s needs because all 
the database types mentioned above are more or 
less appropriate for different scenarios. For large 
amounts of interconnected data graph databases 
could represent the best choice whereas for large 
amounts of structured data relational databases 
may still represent the best choice. The idea behind 
NoSQL databases is not to suppress relational 
databases; it is just a question of the user’s needs. 
So, relational databases now have an alternative, 
but which type to use depends on user’s needs.

The main idea of this article is to explore 
several languages for graph databases. One of the 
languages that is in use is Cypher Query Language 
(CQL). However, it has some limitations as it will 
be shown later on. Because of that a new graphical 
language is proposed (implemented) that should be 
easier to learn and to use (at least for end-users). 
To resolve other limitations (recursion, views) that 
CQL has, it is shown how a logic programming 
language (Datalog) could be used as well.

So, the article is organized as follows. First, the 
background is described. Then CQL is explained. 
In the next two sections a new language for graph 
databases is proposed and implemented and then it 
is shown how a logic programing language could 
be used to write queries that are not supported 
in CQL. In the end future research is given and 
the conclusion is presented. Finally, references 
are listed.

BACKGROUND

Problems With SQL

When SQL was introduced, it was supposed to be 
simple. However, it turned out to be quite complex 
and end-users had problems with more complex 
queries. Although the idea was that SQL had to 
be simple so that end users could write the queries 



 

 

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/query-languages-for-graph-databases/183916

Related Content

Forecasting Model of Electricity Sales Market Indicators With Distributed New Energy Access
Tao Yao, Xiaolong Yang, Chenjun Sun, Peng Wuand Shuqian Xue (2023). International Journal of

Information Technologies and Systems Approach (pp. 1-16).

www.irma-international.org/article/forecasting-model-of-electricity-sales-market-indicators-with-distributed-new-energy-

access/326757

Early Warning of Companies' Credit Risk Based on Machine Learning
Benyan Tanand Yujie Lin (2023). International Journal of Information Technologies and Systems Approach

(pp. 1-21).

www.irma-international.org/article/early-warning-of-companies-credit-risk-based-on-machine-learning/324067

Individual Cloud: After Cloud
Shigeki Sugiyama (2021). Encyclopedia of Information Science and Technology, Fifth Edition (pp. 177-

189).

www.irma-international.org/chapter/individual-cloud/260185

Science Animation and Students' Attitudes
Sivasankar Arumugamand Nancy Nirmala (2018). Encyclopedia of Information Science and Technology,

Fourth Edition (pp. 2599-2615).

www.irma-international.org/chapter/science-animation-and-students-attitudes/183971

Information Systems on Hesitant Fuzzy Sets
Deepak D.and Sunil Jacob John (2016). International Journal of Rough Sets and Data Analysis (pp. 71-97).

www.irma-international.org/article/information-systems-on-hesitant-fuzzy-sets/144707

http://www.igi-global.com/chapter/query-languages-for-graph-databases/183916
http://www.irma-international.org/article/forecasting-model-of-electricity-sales-market-indicators-with-distributed-new-energy-access/326757
http://www.irma-international.org/article/forecasting-model-of-electricity-sales-market-indicators-with-distributed-new-energy-access/326757
http://www.irma-international.org/article/early-warning-of-companies-credit-risk-based-on-machine-learning/324067
http://www.irma-international.org/chapter/individual-cloud/260185
http://www.irma-international.org/chapter/science-animation-and-students-attitudes/183971
http://www.irma-international.org/article/information-systems-on-hesitant-fuzzy-sets/144707

