
Category: Crisis Response and Management

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

1396

DOI: 10.4018/978-1-5225-2255-3.ch120

Crisis Response and Management

INTRODUCTION

In the 1960s, the so-called “software crisis” trig-
gered the advent of software engineering as a 
discipline. This term originated from the critical 
development complexity, which happened due 
to the rapid growth of computational power. At 
that time, the computing power of the machines 
became so overwhelming that a number of software 
development projects were over budget, late or 
unsuccessful. One well-known example was the 
first General Electric’s payroll system launched 
in 1954 at Louisville, Kentucky; this was late, 
over budget, and missing crucial features (Topi, & 
Tucker, 2014). Irrespective of human efforts, the 
complexity of the hardware and software systems 
was hard to cope with by means of the old methods 
and techniques. The challenge was so dramatic 
that in 1967 NATO arranged an invitation-only 
conference, where world leaders in IT research 
and practice searched for an efficient response. 
At the conference, the term “software crisis” was 
coined by F.Bauer and used by E.Dijkstra (Naur, 
& Randell, 1968).

Another term suggested at the conference 
by the same F. Bauer was software engineering. 
The idea was to apply the engineering methods 
of material production to the new domain of 
large-scale concurrent software systems in order 
to make the software projects more accurate and 
predictable. This software engineering approach 
was feasible, though the methods and practices 
used had to differ substantially from those used in 
the material production. Specifically, the experts 
examined bridges as the instances of complex 
material systems.

The attendees concluded that the distribution of 
time and cost by the lifecycle phases, especially for 

the post-delivery maintenance was very different 
for software and material production. This is why 
the new software engineering discipline was in 
need of new methodologies, techniques and tools.

The focus of the software engineering disci-
pline was the “serial” production of substantially 
large-scale, complex and high quality software 
systems. Concerning software complexity, at 
least two dimensions were identified; these were 
technical and management complexity (Booch, 
2006). To measure software product complex-
ity and quality, a set of attributes and metrics 
was suggested. The quality attributes included 
performance, reliability, security, fault tolerance, 
usability, strategic reusability and maintainabil-
ity; their importance depended on the product 
size and scope (Lattanze, 2008). The complexity 
metrics included product size in terms of lines of 
code, function points, nesting levels, cyclomatic 
complexity and a number of more sophisticated 
ones (Debbarma, Debbarma, Chakma, & Jamatia, 
2013). These metrics assisted in the divide-and-
conquer strategy; later, they this general approach 
transformed into elaborate product estimation 
techniques and software development methodolo-
gies (Jensen, 2014).

Researchers argue whether the crisis in software 
engineering is over yet (Colburn, Hsieh, Kehrt, & 
Kimball, 2008) or it still exists (Buettner, Dai, Pong-
numkul, & Prasad, 2015). This happens because 
of the fundamental differences in the lifecycles of 
software and material products. One critical dif-
ference between large-scale software and material 
production is the distribution of time and cost by 
the development lifecycle phases. Therewith, main-
tenance is the most time and cost consuming, it 
often exceeds 60% of the software project expenses 
(Schach, 2011). The other crucial difference is that 

Sergey V. Zykov
National Research University Higher School of Economics, Russia



 C

Category: Crisis Response and Management

1397

software production often depends dramatically 
upon human factors. These human factors relate 
to the management aspects of software complex-
ity, whereas the technology factors relate to the 
technological aspects. Certain product categories 
are far more complex in terms of management than 
in terms of technology; however, the influence of 
the human factors on their development is largely 
underestimated. For such software product catego-
ries as enterprise information systems and defense 
management information systems, neglecting these 
human factors often results in project delays or even 
failures (Booch, 2006).

Therewith, the software crisis originates from 
a number of factors; these are human-related and 
technology-related factors. To manage this crisis, 
the authors suggest a set of software engineer-
ing methods, which systematically optimize the 
lifecycles for both types of these influencing fac-
tors. This lifecycle optimization strategy includes 
crisis-responsive methodologies, system-level 
architectural patterns, informing process frame-
works, and a set of knowledge transfer principles 
(Zykov, 2009; Zykov, Shapkin, Kazantsev, & 
Roslovtsev, 2015; Zykov, 2015).

Software development usually involves cus-
tomers, developers and their management; each 
of these parties has different preferences and 
expectations. Therewith, these parties often differ 
in their vision of the resulting product; typically, 
the customers focus on business value while the 
developers are concerned with technological 
aspects. Such a difference in focus often results 
in crises. Thus, the software crises often has a 
human factor-related root cause. To deal with 
these kind of crises, software engineers should 
enhance their skillset with managerial skills, such 
as teamwork, communications, negotiations, and 
risk management.

BACKGROUND

In the 1960s, the software production lifecycle 
was unstable as no systematic approach existed. 

At that time, software development did not allow 
for adequate planning and management of a project 
timeline and budget. The software products were 
unique masterpieces; they used a build-and-fix 
approach as the core “methodology”. A system-
atic approach to product lifecycle was required 
in order to manage this crisis of development. 
This approach was to include certain technical 
and management aspects. The technical aspects 
should include justified architecture selection and 
high-level design. The management aspects should 
include teamwork and transparent communication 
between the client and the developer.

In this period, software development involved 
a number of parties with significant differences 
in goals and expectations. These were clients, de-
velopers and their management. Each side usually 
had a different understanding of the future product, 
as the clients were business oriented, while the 
developers focused on technology.

At present, this same lack of common under-
standing hampers software development; it is a 
possible source of a software crisis resulting from 
management complexity. To deal with this kind of 
crisis, software engineers enhance their technical 
abilities by a specific “soft” skillset. This includes 
collaborative teamwork, risk management, com-
munications and negotiations. The “soft” skills 
assist software engineers in their management 
of the present-day software development crisis, 
which often results from human factors.

The following decades of the 1970s and 
1980s changed software development from an 
art to a science, though it had not yet become 
a serial production technology. Techniques and 
methods appeared which are currently known 
as the Programmer’s Workbench (Dolotta, & 
Mashey, 1976), third-generation programming 
languages and the supporting Structured Analysis 
and Design Technique (Dahl, Dijkstra, & Hoare, 
1972). Further, in the 1990s software develop-
ment technologies became even more advanced. 
The new technologies which arose at that time 
were more process focused; a few examples of 
these include OOAD (Jacobson, Christerson, 



 

 

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/crisis-response-and-management/183854

Related Content

A Particle Swarm Optimization Approach to Fuzzy Case-based Reasoning in the Framework of

Collaborative Filtering
Shweta Tyagiand Kamal K. Bharadwaj (2014). International Journal of Rough Sets and Data Analysis (pp.

48-64).

www.irma-international.org/article/a-particle-swarm-optimization-approach-to-fuzzy-case-based-reasoning-in-the-

framework-of-collaborative-filtering/111312

Grey Wolf-Based Linear Regression Model for Rainfall Prediction
Razeef Mohd, Muheet Ahmed Buttand Majid Zaman Baba (2022). International Journal of Information

Technologies and Systems Approach (pp. 1-18).

www.irma-international.org/article/grey-wolf-based-linear-regression-model-for-rainfall-prediction/290004

Science Mapping
Chaomei Chen, Rachael Dubinand Timothy Schultz (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 4171-4184).

www.irma-international.org/chapter/science-mapping/112859

Swarm Intelligence for Automatic Video Image Contrast Adjustment
RR Aparna (2016). International Journal of Rough Sets and Data Analysis (pp. 21-37).

www.irma-international.org/article/swarm-intelligence-for-automatic-video-image-contrast-adjustment/156476

Modeling Image Quality
Gianluigi Ciocca, Silvia Corchs, Francesca Gaspariniand Raimondo Schettini (2015). Encyclopedia of

Information Science and Technology, Third Edition (pp. 5973-5983).

www.irma-international.org/chapter/modeling-image-quality/113054

http://www.igi-global.com/chapter/crisis-response-and-management/183854
http://www.irma-international.org/article/a-particle-swarm-optimization-approach-to-fuzzy-case-based-reasoning-in-the-framework-of-collaborative-filtering/111312
http://www.irma-international.org/article/a-particle-swarm-optimization-approach-to-fuzzy-case-based-reasoning-in-the-framework-of-collaborative-filtering/111312
http://www.irma-international.org/article/grey-wolf-based-linear-regression-model-for-rainfall-prediction/290004
http://www.irma-international.org/chapter/science-mapping/112859
http://www.irma-international.org/article/swarm-intelligence-for-automatic-video-image-contrast-adjustment/156476
http://www.irma-international.org/chapter/modeling-image-quality/113054

