Chapter 1 Integrating Technology in Preschool Science and Inquiry

Ornit Spektor-Levy Bar Ilan University, Israel Naama Israeli Bar Ilan University, Israel

Inna Plutov Bar Ilan University, Israel **Netta Perry** Bar Ilan University, Israel

ABSTRACT

Technology has brought about considerable changes in our private, social and professional lives, as well as in our culture and values. Therefore, educational frameworks should make an effort to become more relevant for young students and prepare them for the future in all aspects of career and life, with a focus on Science, Technology, Engineering and Math (STEM). This chapter will discuss the opportunities and challenges of integrating technology into preschool classrooms (3-6 years of age). It attempts to determine the essence of judicious, proportionate, and beneficial integration of technology in preschool, with a particular focus on science and inquiry. Consideration is given to maintaining the children's creativity, their joy of play, their concrete and sensory exploration, their unmediated observation of their environment, their social interactions, and their safety. Examples of actual practices from preschool classrooms are presented followed by recommendations for successful technology integration in preschool curriculum.

INTRODUCTION

In July of 1859, a British philosopher named Herbert Spencer published an essay titled "What Knowledge is of Most Worth?" Spencer wished to define the biggest thing that ought to be taught in the educational system at that time. This same question is still asked today (NEA, 2010; Luna Scott, 2015): What should be studied in educational frameworks to prepare our children for life in a global digital economy?

DOI: 10.4018/978-1-5225-2525-7.ch001

Technology has brought about considerable changes in our private, social and professional lives, as well as in our culture and values. The technologies that exist today are just the tip of the iceberg; some are only in their initial phase of development, and others will be replaced by newer and more sophisticated technologies. Consequently, certain knowledge, skills, and competencies have become redundant, while other knowledge, skills, and competencies have become essential (Zhao, 2012). The Next Generation Science Standards (NGSS, 2013) addressed the need for new Science and Technology standards, noting the competitive global economy, the need to prepare for the demands of new careers in the modern workforce, and the need for an educated society, literate in science and technology (NAE & NRC, 2014). Educational frameworks, therefore, should not only make an effort to become more relevant for young students, but should also prepare them for the future in all aspects of career and life, with a focus on Science, Technology, Engineering and Math (STEM) (Scott, 2012; Zhang, et al. 2010).

This chapter will discuss the opportunities and challenges of integrating technology into preschool classrooms (3- to 6- years of age) in general, with a particular focus on science education and inquiry. The term *technology* has a broad meaning. In this chapter, *technology* refers to digital technology (Instance & Kools, 2013); i.e., all kinds of modern computers, information and communication technology (ICT), and digital media.

BACKGROUND

The Dilemmas

With the ever-growing ubiquity and accessibility of technology and digital devices, today's children spend increasingly more time in front of all types of screens (television, computer, tablet computer, smart phone, hand-held mobile devices, game consoles, and other digital means). One of the dilemmas related to the use of computers, information and communication technology (ICT) and digital media in the preschool classroom concerns children's screen time. A child who sits in front of a screen for protracted periods of time is physically inert. This leads to dwindling physical and motor activity, which result in additional health problems, all of which can be traced to prolonged sitting and staring at a flickering screen (APP, 2016). To avoid these health concerns authorities recommended that screen time limits be set for young children (De Decker, et al., 2012; Lauricella, Wartella, & Rideout, 2015), both at school and at home.

30 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: <u>www.igi-</u> <u>global.com/chapter/integrating-technology-in-preschool-</u> <u>science-and-inquiry/180857</u>

Related Content

Playing with Perpendicular Lines: The Case of Laura

Douglas A. Lappand Dennis St. John (2015). *Cases on Technology Integration in Mathematics Education (pp. 100-120).* www.irma-international.org/chapter/playing-with-perpendicular-lines/119138

Changing Children's Stance towards Mathematics through Mobile Teaching: The Case of Robot A.L.E.X.

Andreas O. Kyriakides, Maria Meletiou-Mavrotherisand Theodosia Prodromou (2015). Integrating Touch-Enabled and Mobile Devices into Contemporary Mathematics Education (pp. 122-145).

www.irma-international.org/chapter/changing-childrens-stance-towards-mathematics-throughmobile-teaching/133317

Malthus' Principle in the Teaching of Evolution as an Integrative Context of Science and Mathematics in Elementary Education

Nelson Mestrinho, Joana Ribeiro, Alexandre Pinto, Inês Sarmentoand Xana Sá-Pinto (2023). *Handbook of Research on Interdisciplinarity Between Science and Mathematics in Education (pp. 224-241).*

www.irma-international.org/chapter/malthus-principle-in-the-teaching-of-evolution-as-anintegrative-context-of-science-and-mathematics-in-elementary-education/317910

High-Quality Trade Books and Content Areas: Planning Accordingly for Rich Instruction

Carolyn A. Groff (2020). Cases on Models and Methods for STEAM Education (pp. 40-54).

www.irma-international.org/chapter/high-quality-trade-books-and-content-areas/237789

Active Learning and the Pythagorean Theorem Through Dynamic Geometry and Robotic Optimization: The Case of Kaitlyn

Douglas A. Lapp, Tibor Marcinekand Sarah E. Lapp (2023). *Technology Integration and Transformation in STEM Classrooms (pp. 75-103).*

www.irma-international.org/chapter/active-learning-and-the-pythagorean-theorem-throughdynamic-geometry-and-robotic-optimization/317535