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ABSTRACT

This book chapter provides a state-of-the-art survey of visual data mining techniques used for collabora-
tive filtering. The chapter begins with a discussion on various visual data mining techniques along with
an analysis of the state-of-the-art visual data mining techniques used by researchers as well as in the
industry. Collaborative filtering approaches are presented along with an analysis of the state-of-the-art
collaborative filtering approaches currently in use in the industry. Visual data mining can provide ben-
efit to existing data mining techniques by providing the users with visual exploration and interpretation
of data. The users can use these visual interpretations for further data mining. This chapter dealt with
state-of-the-art visual data mining technologies that are currently in use apart. The chapter also includes
the key section of the discussion on the latest trends in visual data mining for collaborative filtering.

INTRODUCTION

Researchers are struggling to explore large volumes of data as the volume of data generated increased
exponentially over the last few years. The traditional data mining techniques are not adequate to analyze
and explore these large volumes of data as the available data is available in different dimensions and vary-
ing formats, including multimedia, geographical, and temporal data. Visual data mining techniques and
approaches supplementing traditional data mining techniques can help in dealing with the large volume
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of data. Data Mining is defined as the process of analyzing large information repositories for deriving
and discovering useful patterns and identifying hidden relationships among the data (Siguenza-Guzman,
Saquicela, Avila- Ordéiiez, Vanderwalle & Cattysse, 2015). Data mining is used for knowledge classi-
fication and exploring consistent patterns from large volumes of collected data. Visual data mining can
be quite useful and helpful in designing models for practical solutions for complex problems (Kashwan
&Velu, 2012). Visual data mining has the potential to simplify and ease exploration of these large vol-
umes of data as the user is directly involved in the data mining process (Keim, 2002).

Classification of visual data mining techniques is based on three criteria, namely, the data to be
visualized, the technique of visualization, and the adopted distortion technique (Keim, 2002). Visual
data mining methods can be categorized into two categories, namely, data visualization and information
visualization (Kashwan &Velu, 2012). Data visualization involves the presentation of data in schematic
forms, including histograms, scatter plots, and charts. Information visualization is suitable for datasets
that lack standard mapping of abstract data onto the physical screen space and include visualization
techniques (Keim, 2002).The data mining process includes a sequence of steps, the first of which deals
with integration of raw data from different data sources, including data in data formats. Data cleaning
process follows the data integration process. During data cleansing, noise, duplication and inconsistent
data are removed (Siguenza-Guzman et al., 2015). The third phase is transformation into other formats
that can be interpreted by various data mining tools which apply filtration and aggregation to derive
summarized data. The data analyst can now derive meaningful patterns using these data mining tools.
Visualization can be applied to present data to the user in a comprehensible manner.

Collaborative filtering also referred to as social information filtering, is a variant of memory-based
reasoning that is suitable for application of providing personalized recommendations (Linoff & Berry,
2011). Collaborative filtering methods utilize the past ratings of users to predict or recommend new
contact that the user might like (Nilashi et al., 2013). Collaborative filtering methods are often classified
into two categories, namely, user-based collaborative filtering and item-based collaborative filtering.
Collaborative filtering is based on the concept of similarity coupled with preferences.

Traditional recommendation systems have used collaboration filtering for making recommendations
to users on the basis of how other users have rated the items. Collaborative filtering uses a three-step
process for preparing recommendations for new customers (Linoff & Berry, 2011). The customer profile
is first built followed by a comparison of the new customer profile with profiles of other customers using
some measure of similarity. Such similar profiles are referred to as neighbor profiles in collaborative
filtering. Recommendations are then made based on the predictions from the combination of customer
ratings with those of the neighbor profiles (Bobadilla, Hernando, Ortega, & Gutiérrez, 2012). Col-
laborative filtering techniques are normally applied on large data sets consisting of different kinds of
data. Visual data mining techniques, when applied for collaborative filtering could help in discovering
implicit knowledge in visual forms from these large data sets. Several visualization techniques have been
applied in collaborative filtering, including Multi-Dimensional Scaling (MDS), Spring Embedder, and
the Navigating Exhibitions, Annotations and Resources (NEAR).
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