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INTRODUCTION AND BACKGROUND

The global reduction of child mortality has been a priority
of international and national organizations for the last few
decades. Despite widespread global efforts to improve
child survival, the latest UNICEF report on the State of the
World’s Children 2000 (UNICEF, 2000) indicates that
child mortality rates continue to remain higher in lesser
developed countries (LDCs), and in some areas, girls
continue to die at a greater rate than boys.

Matlab, a rural area of Bangladesh, shows child mor-
tality has declined greatly in the last two decades (Figure
1). The rates have also declined in other rural areas across
the country, though a lesser extent than in Matlab. The
gender mortality differential that was notoriously high in
Matlab in the 1980s virtually disappeared by the mid-
1990s. Despite the large decline and elimination of gender
disparity in child mortality, spatial variations in mortality
continue to exist in Matlab (Ali et al., 2001). This variation
most likely exists in the rest of Bangladesh, as well as in
other less developed countries.

A multitude of social, demographic, economic, and
environmental factors has been identified as global fac-
tors for contributing to the gender differential of child
mortality in Bangladesh (Bairagi et al., 1999; Basu, 1989;
Bhuiya & Streatfield, 1991; Chen et al., 1980; Fauveau et
al., 1991; Islam & Ataharul, 1989; Koenig & D’Souza, 1986;
Muhuri, 1995; Muhuri & Menken, 1997; Salway & Nasim,
1994). Measuring these social environments at a local
geographic scale is important for identifying the environ-
ments that have a link with higher child mortality. The
knowledge would eventually help in directing our effort
towards the areas where it is essentially needed for child
survival. Using a geographic information system (GIS),
we attempted to define local level social environments,

and to identify the environments that are influencing local
level geographic variation of gender specific mortality in
Matlab.

DATA AND METHODS

Child (one to four years) mortality for the periods 1984-86
and 1994-96 were chosen from Matlab demographic sur-
veillance systems to examine the changes in local level
spatial variation of mortality over a decade. The three-
year periods were chosen to avoid temporal bias in the
data.

The Matlab GIS (Figure 2) provided 7691 geographi-
cally referenced points of baris (a group of patrilineally
households living in a geographic space). The mortality
rates were smoothed at the point of baris by a spatially
adaptive filtering that counted population (child) size
close to 35. The choice of the specific population size is
a trade- off between very low and very high smoothed
data. Then, by using kriging (a method that is used to
extrapolate the data at a regular spaced interval (Oliver
&Webstar, 1990)) and contour mapping, gender specific
surface maps of higher mortality were created for the two
time periods. The temporal surface maps of each gender
group were cross-classified, and an output map of each
gender group was created (Figures 3 and 4) with the
changes shown in: risk area remains risk area (R-R), risk

Gender 1984-86 1994-1996 
Male 30.4 9.0 
Female 41.4 10.5 
 

Table 1. Thresholds (deaths/1,000 children) for defining
high-risk areas of child mortality
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area changed to non-risk area (R-N), non-risk area changed
to risk area (N-R), and non-risk area remains non-risk area
(N-N). These maps were used as the dependant variable
in a spatial regression model.

The data on social environment were smoothed using
a fixed filtering of size 210 square meters. Here, our notion
is that social environment beyond that distance has little
influence on an individual’s health outcome. The filtered
data were used to create surface maps of the environment
using the same kriging and contour mapping techniques.
The social environment maps include educational status,
population density, fertility rate, major occupations such
as agriculture, fishing, and business, and Hindu (minority
religious group) predominant areas. All of these maps
were described in binary category: the dominant surface
got the value “1”; else get the value “0”. Finally, distance
surfaces were created from the dominant surface of each
of these maps; the closer a point to the dominated surface,
the smaller the value of the point.

A distance map was created for embankment as an
input variable of the model. The study site consists of two
programmatic areas: non-intervention and intervention.
The attribute of the former one was denoted by “1” and the
latter one was denoted by “0”. The map of accessibility to
nearest health care was determined by cost (in time)
distance. In computing the cost distance, rivers and
canals were treated as barriers, and assigned their cost
five times higher than that of the ground, which is based
on waiting time and speed of movement through bodies
of water.

Analytical Methods

Logistic regression was employed to determine predictive
risk factors for gender-specific child mortality. The re-
gression model takes the form:

logit(p)=ln(p/1-p)=a+b
1
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where p is the dependent variable expressing the prob-
ability of the outcomes.

RESULTS

The thresholds to define higher mortality areas for boys
and girls are given in Table 1. The results of the multiple
logistic regression show that the combined effects of the
factors explain 11% of the total variations in predicting N-
R for male children (Table 2). Being in an area outside an
embankment is the most important factor in predicting risk
for male child mortality, followed by areas of multiple
groups of professionals. A high fertility rate also predicts
spatial risk for male child mortality. Areas of higher popu-
lation density show the lowest spatial risk among the
factors. On the other hand, the same factors do not predict
much (only 3% of total variations) in explaining N-N.

The results of the analysis for predicting R-R and R-
N of male children are presented in Table 3. In the table,
the model R-R shows that the comparison area predicts
higher spatial risk for male child mortality. The effect of an

Model: Non-risk to Risk (N-R) Model: Non-risk to Non-risk (N-N) Variables 
Regression 
coefficient 

t-test Regression 
coefficient 

t-test 

Intercept    -3.817858 -250.14736 2.690645 166.0446 
multiple groups of professionals   0.000090 39.580791 -0.000058 -26.80997 
high educational status    0.000362 18.031919 -0.000044 -2.516286 
high fertility  0.000106 10.347898 0.000123 13.851040 
comparison area    0.170880 17.679539 -0.058213 -6.269722 
outside embankment    0.469618 51.742344 -0.306266 -35.09447 
cost distance to TC    0.001229 21.177443 -0.000528 -9.392699 
high density of population     0.009980 1.036064 0.054325 5.873418 
Hindu dominance  0.001021 17.087276 -0.000358 -6.205904 

Adjusted R2 0.114470 0.034517 
 

Table 2. Results of the multiple logistic regression (spatial) of the male child mortality

Models: Non-risk area changed to risk area (N-R) and non-risk remains risk area (N-N).
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