
 2551

�
����!���
���
��	���	
�����������
�����������

Rick Gibson
American University, USA

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

With software an increasingly significant component of
most products, it is vital that teams of software and
systems engineers collaborate effectively to build cost
effective, reliable products. This article will identify the
key aspects of software engineering and systems engi-
neering in an effort to highlight areas of consensus and
conflict to support current efforts by practitioners and
academics in the both disciplines in redefining and inte-
grating their professions and bodies of knowledge.

In response to increasing concerns about software
development failures, the Software Engineering Institute
(SEI) pioneered a software process improvement model in

1988, with the fully developed version of their Capability
Maturity Model for Software (SW- CMMâ) appearing in
1993. Since the early nineties, there have been compa-
rable improvement models introduced in the systems
engineering community as well, some of which have been
published and widely accepted include: Systems Engi-
neering Capability Maturity Model (SE-CMM), also
known as the Electronic Industries Alliance Interim
Standard (EIA/IS) 731, Systems Engineering Capability
Model (SECM), and the Integrated Product Develop-
ment Capability Maturity Model (IPD-CMM). The re-
sulting avalanche of models and standards has been
described by Sarah Sheard (Software Productivity Con-
sortium) as a “Framework Quagmire”. In December of

Similarities Differences
Definition and analysis involves manipulation
of symbols.

Software is not subject to physical wear or
fatigue.

Highly complex aggregation of functions,
requiring satisfying (though not optimizing)
multiple criteria.

Copies of software are less subject to
imperfections or variations.

Decisions driven by need to satisfy quality
attributes such as reliability, safety, security,
and maintainability.

Software is not constrained by the laws of
physics.

Easy and dangerous to suboptimize solutions
around individual subsystem functions or
quality attributes.

Software interfaces are conceptual, rather than
physical—making them more difficult to
visualize.

Increasing levels of complexity and
interdependency.

Relative to hardware, software testing involves
a larger number of distinct logic paths and
entities to check.

 Unlike hardware, software errors arrive
without notice or a period of graceful
degradation.

 Hardware repair restores a system to its
previous condition; repair of a software fault
generally does not.

 Hardware engineering involves tooling,
manufacturing, and longer lead times, while
software involves rapid prototyping and fewer
repeatable processes.

Table1. Software and system engineering similarities and differences

2552

Software and Systems Engineering Integration

2000, the SEI initiated the Capability Maturity Model–
Integrated (CMMISM) project, which combines best prac-
tices from the systems and software engineering disci-
plines. (Note: CMMâ and CMMISM are copyrights and
service marks of the Software Engineering Institute.)

Recent studies (Carter et al., 2003; Goldenson &
Gibson, 2003) have validated the SEI’s assertion the each
of the disciplines benefit from incorporation of principles
from the other. Moreover, there appears to be no funda-
mental differences between the disciplines that would
prevent their integration.

BACKGROUND

There is great hope that the SEI imitative will provide the
impetus to overcome some long-standing discipline bound-
aries. The nature of the systems and software engineering
work has led to terminology differences rooted in the very
descriptions of the disciplines. One important problem
with software is the difficulty in understanding its inher-
ent level of quality.

Issues and concerns regarding such an integration
were articulated by Barry Boehm and Fred Brooks as early
as 1975. Boehm suggested that the adoption of systems
engineering reliability techniques by software engineers
was counterproductive. Moreover, Brooks’ Law sug-
gests that a common systems engineering solution to
schedule slippage (add more people) will only make late
software projects even later.

More recently, Boehm (1994) expressed concerns
that, in spite of the central function of software in modern
systems, the two engineering disciplines have not been
well integrated. Boehm articulated similarities and differ-
ences as shown in Table 1.

Software engineering, as defined by the Institute of
Electrical and Electronics Engineers (IEEE, 2001), is: (1)
the application of a systematic, disciplined, quantifiable
approach to the development, operation, and mainte-
nance of software; that is, that application of engineering
to software; (2) The study of approaches as in (1)—and
further identifies the body of knowledge for software
engineering to be: software requirements, software de-
sign, software construction, software testing, software
maintenance, software configuration management, soft-
ware engineering management, software engineering pro-
cess, software engineering tools and methods, and soft-
ware quality.

A useful definition of systems engineering resides in
an in-process body of knowledge document by the Inter-
national Council on Systems Engineers (Leibrandt, 2001,
p. 3), which defines systems engineering in terms of
product and process: “…product oriented engineering

discipline whose responsibility is to create and execute an
interdisciplinary process to ensure that customer and
stakeholder needs are satisfied in a high quality, trustwor-
thy, cost effective and schedule compliant manner
throughout a system’s lifecycle”. The process starts with
customer needs, and consists of stating the problem,
investigating alternatives, modeling, integrating, launch-
ing the system, and assessing performance. Moreover,
the system engineer is responsible for pulling together all
the disciplines to create a project team to meet customers’
needs. The complete systems engineering process in-
cludes performance, testing, manufacturing, cost, sched-
ule, training and support, and disposal. The body of
knowledge recognizes that systems engineering pro-
cesses often appear to overlap software and hardware
development processes and project management. Thus,
systems engineering is a discipline that focuses on pro-
cesses; it develops structure, and efficient approaches to
analysis and design to solve complex engineering prob-
lems. In response to concerns about integrated develop-
ment of products, the system engineer plans and orga-
nizes technical projects and analyzes requirements, prob-
lems, alternatives, solutions and risks. Systems engineer-
ing processes are not specific to a particular discipline;
they can be applied in any technical or engineering envi-
ronment.

In short, software engineering is defined by IEEE
Standard 610.12 as the application of a systematic, disci-
plined, quantifiable approach to the development, opera-
tion, and maintenance of software—that is, the applica-
tion of engineering to software. Eisner (2002) adopts the
International Council on Systems Engineering (INCOSE)
definition of systems engineering as an interdisciplinary
approach and means to enable the realization of success-
ful systems.

When different process models are in place within
developer groups, say for systems engineering and soft-
ware engineering of an organization, the organizations
will have communication problems, be unable to improve
their processes, and if the combined performance of one
advances beyond the other in capability, then the prob-
lems are even more profound (Johnson, 1998).

In 2002, the SEI released a single integrated capability
model for systems engineering and software engineering,
integrated product and process development and sup-
plier sourcing. The new model, Capability Maturity Model
Integrated (CMMI), is intended to improve organizations’
development and maintenance of products. The CMMI
will eventually replace the SEI’s Software Capability
Maturity Model (Phillips, 2002). In the integrated model
(SEI, 2002), CMMI, the categories and processes are:

One purpose of the CMMI was to evolve the software
CMM while integrating the best features of the systems
engineering capability models. The combination of the

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-systems-engineering-integration/14651

Related Content

Managing Relationships in Virtual Team Socialization
Shawn D. Long, Gaelle Picherit-Duthlerand Kirk W. Duthler (2009). Encyclopedia of Information Science

and Technology, Second Edition (pp. 2510-2516).

www.irma-international.org/chapter/managing-relationships-virtual-team-socialization/13937

Promoting the Use of ICT for Education in a Traditional University: The Case of the Virtual

Learning Center of the University of Granada
Oscar Cordón, Karina Anaya, Arturo Gonzálezand Susana Pinzón (2007). Journal of Cases on Information

Technology (pp. 90-107).

www.irma-international.org/article/promoting-use-ict-education-traditional/3196

Customer Segmentation Marketing Strategy Based on Big Data Analysis and Clustering

Algorithm
Xiaotong Liand Young Sook Lee (2024). Journal of Cases on Information Technology (pp. 1-16).

www.irma-international.org/article/customer-segmentation-marketing-strategy-based-on-big-data-analysis-and-

clustering-algorithm/336916

The Role of Place: Tasmanian Insights on ICT and Regional Development
Dean Steerand Paul Turner (2008). Information Communication Technologies: Concepts, Methodologies,

Tools, and Applications (pp. 1494-1505).

www.irma-international.org/chapter/role-place-tasmanian-insights-ict/22752

Impact of Age on Information Technology Salaries
Jing Quan, Ronald Datteroand Stuart D. Galup (2010). Global, Social, and Organizational Implications of

Emerging Information Resources Management: Concepts and Applications (pp. 403-420).

www.irma-international.org/chapter/impact-age-information-technology-salaries/39253

http://www.igi-global.com/chapter/software-systems-engineering-integration/14651
http://www.irma-international.org/chapter/managing-relationships-virtual-team-socialization/13937
http://www.irma-international.org/article/promoting-use-ict-education-traditional/3196
http://www.irma-international.org/article/customer-segmentation-marketing-strategy-based-on-big-data-analysis-and-clustering-algorithm/336916
http://www.irma-international.org/article/customer-segmentation-marketing-strategy-based-on-big-data-analysis-and-clustering-algorithm/336916
http://www.irma-international.org/chapter/role-place-tasmanian-insights-ict/22752
http://www.irma-international.org/chapter/impact-age-information-technology-salaries/39253

