
1068

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 48

DOI: 10.4018/978-1-4666-9624-2.ch048

Software Engineering
Ethics Education:

Incorporating Critical Pedagogy
into Student Outreach Projects

ABSTRACT

The difficulties inherent in the nature of software as an intangible object pose problems for specifying
its needs, predicting overall behavior or impact on users, and therefore on defining the ethical questions
that are involved in software development. Whereas software engineering drew from older engineering
disciplines for process and practice development, culminating in the IEEE/ACM Professional Code in
1999, the topic of Software Engineering Ethics is entwined with Computer Science, and developments
in Computer and Information Ethics. Contemporary issues in engineering ethics such as globalization
have raised questions for software engineers about computer crime, civil liberties, open access, digi-
tal divide, etc. Similarly, computer-related ethics is becoming increasingly important for engineering
ethics because of the dominance of computers in modern engineering practice. This is not to say that
software engineers should consider everything, but the diversity of ethical issues presents a challenge
to the approach of accumulating resources that many ethicists maintain can be overcome by developing
critical thinking skills as part of technical training courses. This chapter explores critical pedagogies
in the context of student outreach activities such as service learning projects and considers their poten-
tial in broadening software engineering ethics education. The practical emphasis in critical pedagogy
can allow students to link specific software design decisions and ethical positions, which can perhaps
transform both student and teacher into persons more curious about their individual contribution to the
public good and more conscious of their agency to change the conditions around them. After all, they
share with everyone else a basic human desire to survive and flourish.

Gada Kadoda
University of Khartoum, Sudan

1069

Software Engineering Ethics Education

INTRODUCTION

As a discipline, software engineering grew out
of computer science in response to the “software
crisis” of the 1960s that was characterized by the
growth in complexity or criticality of computer
applications and the problems of software proj-
ects going over budget and time. The need arose
to identify processes and methods that could
“engineer” software in similar ways as material
objects like buildings or cars. Pioneering works of
Dijkstra(1968) and Parnas (1972) on programming
among others laid out the foundations of devel-
opment methodologies and early models such as
Waterfall and Spiral that borrow from engineer-
ing and project management typical practices as
requirements, design, construction, risk manage-
ment, etc. The debates on whether software can
be “engineered” are mainly concerned with the
difficulties in matching the preciseness of mea-
surements that are found in traditional engineering
work (used to describe structures, electronic or
mechanical devices). In turn, this drove research on
areas such as software metrics and effort estima-
tion that are concerned with defining qualities and
quantities for measuring software and predicting
cost and time of software development projects
(Fenton & Pfleeger, 1997). These difficulties,
inherent in the nature of software as an intangible
object, also pose similar problems for specifying
its needs, predicting overall behavior or impact on
users, and therefore on defining the ethical ques-
tions that are involved in software development.
Although the position of software engineering
as an engineering discipline is still controversial
(Shaw, 1990; McConnell, 1999; Parr, 2013) and
the problems of software projects going over
budget and time persist, research on approaches
for more rigorous and disciplined practices is still
evolving (Schmidt, 2013). These debates, however,
are not the focus of this chapter, but the origins
of software engineering in computer science and
its “transition” into an engineering discipline that

are relevant to the development of its professional
obligations and ethical codes, as well as teaching
approaches.

The fact that software engineering matured
in computer science departments rather than in
engineering schools, some researchers argue, led
to an emphasis on moral or legal abuses com-
mitted with a computer in its approach to ethics.
However, ethical considerations in software en-
gineering have been evolving over the past two
decades from focus on customer and employer to
look at societal implications of computer systems.
Although it took a century for ethical codes for the
medical profession and decades for engineering
to consider the social context, the rapid pace of
technological advancement and their ubiquitous
nature bring new ethical issues more frequently
into the lexicon of computing ethicists. Contem-
porary issues in general engineering ethics such
as globalization have raised questions for software
engineers about computer crime, civil liberties,
open access, digital divide, etc. Computer-related
ethics is also becoming increasingly important
for engineering ethics because of the dominance
of computers in modern engineering practice.
In the early 1990s, a different emphasis within
computer ethics was advocated by Donald Got-
terbarn (1991) who believed that computer ethics
should be seen as a professional ethics devoted to
the development and advancement of standards of
good practice and codes of conduct for computing
professionals. He headed the joint task force of
the IEEE and ACM that created the code of eth-
ics for software engineers in the late 1990s. The
code lays out 8 principal obligations of software
engineers to society, client, employer, colleagues,
and the profession in the processes they follow
and judgments they make to develop and maintain
their products (Gotterbarn, 1997).

In class, software engineering ethics, often
overlooked, highlights issues of confidentiality,
competence, intellectual property, and computer
misuse, and introduces the ACM/IEEE Code of

20 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-engineering-ethics-education/146432

Related Content

Principal Preparation: The Case of Novice Principals in Turkey
Kadir Beyciogluand Helen Wildy (2017). Educational Leadership and Administration: Concepts,

Methodologies, Tools, and Applications (pp. 1152-1169).

www.irma-international.org/chapter/principal-preparation/169054

A Comprehensive Review on the Integration of Artificial Intelligence in the Field of Education
Gopali Dayal, Pooja Vermaand Shallu Sehgal (2024). Leveraging AI and Emotional Intelligence in

Contemporary Business Organizations (pp. 331-349).

www.irma-international.org/chapter/a-comprehensive-review-on-the-integration-of-artificial-intelligence-in-the-field-of-

education/335428

Building Positive Mentoring Experiences for Black Male Faculty at a Historically Black College

and University
James Edward Osler II (2018). Faculty Mentorship at Historically Black Colleges and Universities (pp. 179-

200).

www.irma-international.org/chapter/building-positive-mentoring-experiences-for-black-male-faculty-at-a-historically-black-

college-and-university/198831

Development and Implementation of Integrated Quality Management Framework in Management

Education
Yanamandra Ramakrishnaand A. M. Sakkthivel (2020). Quality Management Implementation in Higher

Education: Practices, Models, and Case Studies (pp. 200-216).

www.irma-international.org/chapter/development-and-implementation-of-integrated-quality-management-framework-in-

management-education/236036

Leadership Using Internal Controls for a Decentralized (Remote) Workforce
Lisa Bushur-Harris (2022). Business Models to Promote Technology, Culture, and Leadership in Post-

COVID-19 Organizations (pp. 74-92).

www.irma-international.org/chapter/leadership-using-internal-controls-for-a-decentralized-remote-workforce/309477

http://www.igi-global.com/chapter/software-engineering-ethics-education/146432
http://www.irma-international.org/chapter/principal-preparation/169054
http://www.irma-international.org/chapter/a-comprehensive-review-on-the-integration-of-artificial-intelligence-in-the-field-of-education/335428
http://www.irma-international.org/chapter/a-comprehensive-review-on-the-integration-of-artificial-intelligence-in-the-field-of-education/335428
http://www.irma-international.org/chapter/building-positive-mentoring-experiences-for-black-male-faculty-at-a-historically-black-college-and-university/198831
http://www.irma-international.org/chapter/building-positive-mentoring-experiences-for-black-male-faculty-at-a-historically-black-college-and-university/198831
http://www.irma-international.org/chapter/development-and-implementation-of-integrated-quality-management-framework-in-management-education/236036
http://www.irma-international.org/chapter/development-and-implementation-of-integrated-quality-management-framework-in-management-education/236036
http://www.irma-international.org/chapter/leadership-using-internal-controls-for-a-decentralized-remote-workforce/309477

