
 2135

�
3��'�����	����
!�5�	������
���
.�0
�������%��

Guadalupe Salazar-Zárate
Technical University of Catalonia, Spain

 Pere Botella
Technical University of Catalonia, Spain

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

In Nuseibeh and Easterbrook (2000), an overview of the
field of software and systems requirements engineering is
presented. Therein is highlighted some key open-re-
search issues for the future of the Requirements Engineer-
ing (RE). Some of the major challenges mentioned there,
are related with the necessity of richer models for captur-
ing and analyzing non-functional requirements. This pa-
per draws some possible extensions of Unified Modeling
Language (UML) (Booch, G., Jacobson, I. and Rumbaugh,
J., 1998) in order to include non-functional requirements.

BACKGROUND

Within the Requirements Engineering processes (e.g.,
domain analysis, elicitation, modeling, validation, etc.), it
is common to distinguish between functional and non-
functional requirements. The relevance of functional re-
quirements has been traditionally well-covered by the
existing modeling techniques, where a lot of research has
been done. However, non-functional requirements (NFRs
for short), quality and constraint properties, are not usu-
ally covered by these modeling techniques. On the con-
trary of its functional counterpart and despite the critical
role they have during system development, they have
received little attention in the literature as mentioned by
Chung, L., Nixon, B.A.,Yu, E. and Mylopoulos, J. (2000).
How can we model and reason about NFRs? How can
these models be integrated with those modeling tech-
niques? These are still some of the key challenges that
need more research.

Functional and non-functional aspects regarding the
external system behavior involve two different ways of
evaluating and/or developing a given software system.
On one hand, functional aspects are directly connected to
what the system does, for example, the basic functions that
a system (or a system component) must provide. On the
other hand, non-functional aspects are related with how
the system behaves with respect to some observable

attributes such as performance, reliability, efficiency,
reusability, portability, maintainability (i.e., some soft-
ware qualities). To illustrate the wide variety of issues for
software quality, in Chung et al. (2000, p.160) a list of non-
functional requirements can be found.

There are two basic approaches to characterize non-
functional requirements: Product-oriented and Process-
oriented (Chung et al., 2000). The product-oriented ap-
proach basically focuses on the development of a formal
framework so that a software product can be evaluated in
relation to the highest degree it fulfills for non-functional
requirements (constraints over non-functional proper-
ties). The process-oriented approach uses non-func-
tional information to guide the development of software
systems. Among the works dealing with this perspective
of non-functionality, those of Chung et al. (2000) are
without any doubt the most complete ones. Therein a NFR
framework, to deal with diverse non-functional require-
ments to drive the design by justifying decisions during
the software development process, is described. The
framework also offers structured, graphical facilities for
stating, managing, and inter-relating non-functional re-
quirements while justifying decisions and determining
their impact throughout the development process.

In Cysneiros and Leite (2001a, 2001b), and Cysneiros,
L.M., Leite, J.C.S.P. and Neto, J.S.M. (2001) an approach
that complements the work reported in Chung et al. (2000)
is presented. Strategies can be found there that are con-
cerned with the problem of how to identify and integrate
non-functional requirements with functional requirements,
in a process-oriented approach and using UML.

Another important language that focuses on non-
functional requirements is the Goal-oriented Requirement
Language (GRL) (ITU-T, URN Focus Group, 2002b), (http:/
/www.cs.toronto.edu/km/GRL/). The GRL graphical lan-
guage is used to support goal and agent-oriented model-
ing and reasoning of requirements. The GRL is built on the
well-established NFR Framework (used for modeling
NFRs) and the agent-oriented language i* (Yu, 1997)
(used for the modeling, analysis, and reengineering of
organizations and business processes).

2136

Non-Functional Requirements and UML Stereotypes

OUR APPROACH TO NON-
FUNCTIONAL REQUIREMENTS AND
UML

UML has today become a standard modeling language for
software systems development (Object Management
Group, 2001). UML offers a graphical notation to create
models. However, it is mainly focused on functional
aspects of the software development.

In the following approach we outline some possible
extensions of UML in order to include non-functional
requirements. In the works by Botella, P., Burgués, X.,
Franch, X., Huerta, M. and Salazar, G. (2002), and Salazar-
Zárate, G, Botella, P. and Dahanajake A. (2003), more
detailed considerations about this topic can be found.

The International Standard ISO/EC 9126-1 (2001) can
be used as a starting point to identify non-functional
attributes of products that are potentially relevant to be
modeled in a software development process. This stan-
dard provides a framework for software product quality,
specifying quality characteristics to be used in the quality
evaluation of software products. A quality model is
defined by means of general characteristics of software,
which are further refined into subcharacteristics in a
multilevel hierarchy. In the standard, the characteristics
of functionality, reliability, usability, efficiency, main-
tainability, and portability are being placed at the top of
the hierarchy. Measurable software attributes appear at
the bottom of the hierarchy. Software quality metrics

allows developers to quantify up to what degree a soft-
ware system meets non-functional requirements.

A language called NoFun (acronym for “NOn-
FUNctional”) is a notation that focuses on representing
non-functional aspects of software systems, at the prod-
uct level within the component-programming framework
(Franch, 1998; Burgués & Franch, 2000; Botella et al.,
2002). It is a formal language for description of software
quality requirements using the ISO/IEC 9126 standard to
summarize quality characteristics (see figure 1). Although
the ISO/IEC 9126-1 (2001) replaces the previous version
of 1991, the basic principles stay and we are still able to
use the same layout therein described.

To achieve the goal of formalization within NoFun,
three different kinds of capabilities are provided. First,
there are modules for defining the different kind of con-
cepts in the standard (characteristics, subcharacteristics
and attributes). Second, values for these attributes may
be given (in behavior modules) and bound to particular
software components (i.e., the ones under evaluation).
Third, additional constructions for representing quality
requirements and assessment criteria are included.

In figure 1, an example of distribution of a quality
model into modules is shown (extracted from Botella et al.
(2002). Two characteristics defined in terms of four
subcharacteristics appear in the upper part of the figure.
Behavioral modules (denoted by the B

i
), are abstractions

of software components in the sense that they contain all
the relevant information for quality evaluation. Quality
requirements may be defined as restricting the values of

Figure 1. Layout of a quality model under NoFun language.

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/non-functional-requirements-uml-

stereotypes/14573

Related Content

Web Caching
Antonios Danalis (2005). Encyclopedia of Information Science and Technology, First Edition (pp. 3048-

3053).

www.irma-international.org/chapter/web-caching/14741

Machine Learning Tool to Predict Student Categories After Outlier Removal
Anindita Desarkar, Ajanta Dasand Chitrita Chaudhuri (2022). Journal of Information Technology Research

(pp. 1-18).

www.irma-international.org/article/machine-learning-tool-to-predict-student-categories-after-outlier-removal/299380

Prediction of Nurses Allotment to Patient in Hospital through Game Theory
Satya Ranjan Dashand Rekha Sahu (2022). Journal of Information Technology Research (pp. 1-15).

www.irma-international.org/article/prediction-of-nurses-allotment-to-patient-in-hospital-through-game-theory/299916

Semantic Health Mediation and Access Control Manager for Interoperability Among Healthcare

Systems
Abdullah Alamri (2018). Journal of Information Technology Research (pp. 87-98).

www.irma-international.org/article/semantic-health-mediation-and-access-control-manager-for-interoperability-among-

healthcare-systems/212611

Competing in the Marketplace: Incorporating Online Education into Higher Education
Deirdre A. Folkers (2007). Emerging Information Resources Management and Technologies (pp. 67-88).

www.irma-international.org/chapter/competing-marketplace-incorporating-online-education/10095

http://www.igi-global.com/chapter/non-functional-requirements-uml-stereotypes/14573
http://www.igi-global.com/chapter/non-functional-requirements-uml-stereotypes/14573
http://www.irma-international.org/chapter/web-caching/14741
http://www.irma-international.org/article/machine-learning-tool-to-predict-student-categories-after-outlier-removal/299380
http://www.irma-international.org/article/prediction-of-nurses-allotment-to-patient-in-hospital-through-game-theory/299916
http://www.irma-international.org/article/semantic-health-mediation-and-access-control-manager-for-interoperability-among-healthcare-systems/212611
http://www.irma-international.org/article/semantic-health-mediation-and-access-control-manager-for-interoperability-among-healthcare-systems/212611
http://www.irma-international.org/chapter/competing-marketplace-incorporating-online-education/10095

