
1190

)�������
����
����������*��
������,
� �%
�
����
��

Wenbing Zhao
University of California, Santa Barbara, USA

Louise E. Moser
University of California, Santa Barbara, USA

P. Michael Melliar-Smith
University of California, Santa Barbara, USA

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

The services provided by computers and communication
networks are becoming more critical to our society. Such
services increase the need for computers and their appli-
cations to operate reliably, even in the presence of faults.
Fault tolerance is particularly important for distributed
and networked systems (Mullender, 1993), including tele-
communication, power distribution, transportation, manu-
facturing, and financial systems.

Fault-tolerant computing has been oriented towards
custom designs and computer hardware (Siewiorek &
Swarz, 1998), towards particular kinds of applications
(Wensley et al., 1978), and towards operating systems
(Borg, 1989). However, as computer and communication
systems have become more complex and as hardware has
become cheaper, designs have moved towards commer-
cial off-the-shelf hardware and towards fault tolerance
middleware located as a software layer between the appli-
cation and the operating system.

Traditional proprietary designs are now being chal-
lenged by industry standards, such as the Fault Tolerant
CORBA standard (Object Management Group, 2000) for
distributed object applications based on the Common
Object Request Broker Architecture (CORBA), and also
the Hardware Platform Interface and Application Inter-
face Specification (Service Availability Forum, 2003) for
telecommunication and other embedded systems.

Of particular importance in the development of fault-
tolerant computing is the distinction between applica-
tion-aware and application-transparent fault tolerance. In
application-aware fault tolerance, the application is aware
of, and explicitly exploits, the mechanisms provided by
the fault tolerance infrastructure, using application pro-
gram interfaces (APIs). The application programmer writes
code corresponding to the APIs to perform specific opera-
tions, such as to checkpoint an application process and
to restore the process from the checkpoint, or to send a

message across the network to a process on another
processor and to receive the message on that other
processor.

In application-transparent fault tolerance, the appli-
cation is rendered fault tolerant, without involvement by,
or modification to, the application program (Bressoud,
1998; Moser, Melliar-Smith, & Narasimhan, 1998). A fault
tolerance middleware library is interposed ahead of the
operating system libraries, between the application and
the operating system (Narasimhan, Moser, & Melliar-
Smith, 2002). When the application invokes standard
operating system functions, those invocations are di-
verted to the fault tolerance middleware library, which
modifies the operating system functions to provide addi-
tional fault tolerance functionality (Zhao, Moser, &
Melliar-Smith, 2004). The application programmer does
not need to implement or invoke additional methods for
fault tolerance or to include additional fault tolerance
code in the application program.

BACKGROUND

The basic terminology of fault-tolerant computing can be
found in Laprie (1992). The terms failure, error, and fault
were defined originally by Melliar-Smith & Randell (1977)
and have become part of the ISO standard.

• A failure is the event of a system’s generating a
result that does not satisfy the system specifica-
tion, or of the system’s not generating a result that
is required by the system specification. A failure is
defined by the system specification, without refer-
ence to any components internal to the system, or
to any enclosing system of which the system is a
component.

• An error is incorrect information, or lack of informa-
tion, within a system that will, unless detected and
corrected, lead to a failure of the system.

 1191

Fault Tolerance for Distributed and Networked Systems

�

• A fault is the original cause of an error, whether
hardware or software. Sometimes the cause of the
error is strictly objective but sometimes, particu-
larly for software, it is a matter of subjective opinion.

A failure of a system might be a fault within a larger
enclosing system. Similarly, a fault might be the failure of
one of the components from which the system is con-
structed.

Faults (Cristian, 1991) are further classified as follows:

• A crash fault occurs when a component operates
correctly up to some point in time, after which it
produces no further results.

• A timing fault occurs when a component produces
results at the wrong time, either too early or too late.

• An omission fault occurs when a component pro-
duces some results but not others.

• A commission fault occurs when a process or pro-
cessor generates incorrect results. A Byzantine or
malicious fault is a form of commission fault in
which a process or processor generates incorrect
results that are intentionally designed to mislead
the algorithms or components of the system.

The metrics used in fault-tolerant computing include:

• Reliability is a measure of the uptime of a system in
the absence of failure, and is given by the Mean
Time Between Failure (MTBF).

• Repairability is a measure of how quickly a failed
component or system can be restored to service,
and is given by the Mean Time To Repair (MTTR).

• Availability is a measure of the uptime of a system,
and is related to MTBF and MTTR by the formula:
Availability = MTBF/(MTBF + MTTR). High avail-
ability typically means five nines (99.999%) or bet-
ter, which corresponds to 5.25 minutes of planned
and unplanned downtime per year.

TECHNOLOGY OF FAULT
TOLERANCE

Replication

The basic strategy used in fault-tolerant systems to
protect an application against faults is replication, so
that if one replica becomes faulty, another replica is
available to provide the service. The unit of replication
can be an entire processor, a process, a Java container, a
CORBA object or some other component. In this article,
we refer to such a unit as a component. The replicas of a
component constitute a group of two or more compo-
nents. To provide fault isolation, the replicas of a compo-
nent must be independent of each other, with no shared
memory or data and with communication controlled by the
fault tolerance middleware, so that the failure of one
replica does not disable another replica. Several kinds of
replication are possible (Powell, 1991).

Passive replication, shown in Figure 2, distinguishes
one of the server replicas as the primary server replica and
the other as the backup server replica. The primary ex-
ecutes methods invoked on the group, and the backup
does not execute those methods. In cold passive replica-

Figure 1. The original application is shown at the left. In application-aware fault-tolerance (shown in the middle),
the application program includes additional code that invokes the fault tolerance middleware library. In application-
transparent fault-tolerance (shown at the right), the fault tolerance middleware library is interposed between the
application and the operating system library.

Application
Program
Code

OS Library

Operating
System

Application
Program
Code

OS Library

Operating
System

Fault Tolerance
Middleware
Library

Additional
Program
Code in
Application
Program

Application
Program
Code

OS Library

Operating
System

Fault Tolerance
Middleware
Library

Application
Process

Application
Process

Original
(Not Fault-Tolerant)

Application

Application-Aware
Fault-Tolerant

Application

Application-Transparent
Fault-Tolerant

Application

Application
Process

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/fault-tolerance-distributed-networked-

systems/14409

Related Content

A Single-Objective Recovery Phase Model
Sandy Mehlhorn, Michael Racer, Stephanie Iveyand Martin Lipinski (2011). International Journal of

Information Technology Project Management (pp. 53-71).

www.irma-international.org/article/single-objective-recovery-phase-model/55794

RFID and Labor Management Systems Selection in the Logistics Industry
Cheryl A. Tibusand Linda L. Brennan (2010). Journal of Cases on Information Technology (pp. 31-49).

www.irma-international.org/article/rfid-labor-management-systems-selection/40322

Smart Libraries in the Google Glass Era for Millennial Users
Priyanka V. Saneand Veena A. Prakashe (2021). Handbook of Research on Records and Information

Management Strategies for Enhanced Knowledge Coordination (pp. 204-222).

www.irma-international.org/chapter/smart-libraries-in-the-google-glass-era-for-millennial-users/267090

A Conceptual Development of Process and Outcome User Satisfaction
Jonathan B. Woodroofand George M. Kasper (1998). Information Resources Management Journal (pp. 37-

43).

www.irma-international.org/article/conceptual-development-process-outcome-user/51051

Solutions for Wireless City Networks in Finland
Tommi Inkinenand Jussi S. Jauhiainen (2009). Encyclopedia of Information Science and Technology,

Second Edition (pp. 3542-3547).

www.irma-international.org/chapter/solutions-wireless-city-networks-finland/14102

http://www.igi-global.com/chapter/fault-tolerance-distributed-networked-systems/14409
http://www.igi-global.com/chapter/fault-tolerance-distributed-networked-systems/14409
http://www.irma-international.org/article/single-objective-recovery-phase-model/55794
http://www.irma-international.org/article/rfid-labor-management-systems-selection/40322
http://www.irma-international.org/chapter/smart-libraries-in-the-google-glass-era-for-millennial-users/267090
http://www.irma-international.org/article/conceptual-development-process-outcome-user/51051
http://www.irma-international.org/chapter/solutions-wireless-city-networks-finland/14102

