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INTRODUCTION

Learning algorithms are central to pattern recognition,
artificial intelligence, machine learning, data mining, and
statistical learning. The term often implies analysis of
large and complex data sets with minimal human interven-
tion. Bayesian learning has been variously described as
a method of updating opinion based on new experience,
updating parameters of a process model based on data,
modelling and analysis of complex phenomena using
multiple sources of information, posterior probabilistic
expectation, and so on. In all of these guises, it has
exploded in popularity over recent years.

General texts on Bayesian statistics include Bernardo
and Smith (1994), Gelman, Carlin, Stern, and Rubin (1995),
and Lee (1997). Texts that derive more from the informa-
tion science discipline, such as Mitchell (1997) and Sarker,
Abbass, and Newton (2002), also include sections on
Bayesian learning.

Given recent advances and the intuitive appeal of the
methodology, Bayesian learning is poised to become one
of the dominant platforms for modelling and analysis in
the 21st century. This article provides an overview of
Bayesian learning in this context.

BACKGROUND

Bayesian Modelling

Bayesian learning aims to provide information about
unknown characteristics of a population (such as a mean
and/or a variance) or about relationships between charac-
teristics (for example, via a regression equation or a neural
network). We often have a set of alternative models or
hypotheses, H

1
, H

2
,…, H

m
, that could describe these

unknowns, such as possible values for the unknown mean
or alternative neural network representations. The Baye-
sian approach allows prior beliefs about these models to
be updated in the light of new data. The fundamental
enabling mechanism is Bayes’ rule:
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which states that the posterior probability p(H
i
|D) of a

particular model, H
i
, conditional on data, D, is proportional

to the probability p(D|H
i
) of the data, given the model

multiplied by the prior probability p(H
i
) of the model. The

denominator p(D), a normalizing constant designed to
make the posterior probability sum or integrate to one, can
be termed the probability of the data and is expressed as
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The number of plausible models might be infinite, for
example, when the different models are represented by
unknown values of a continuously distributed popula-
tion mean. In this case, probability distributions become
densities and the summation in p(D) is replaced by an
integral. In either case, it is this denominator, p(D), that is
often intractable. This motivates the development of
numerical methods such as Markov chain Monte Carlo,
described in the next section.

As a simple example, consider sampling n data points
y

1
, y

2,
…, y

n
 from a population of normally distributed

measurements in order to estimate an unknown mean, µ,
and assume that the population variance, σ2, is known.
Thus, H is the set of all possible values that µ may take.

The sample mean, y , represents the information con-

tained in the data so that p(D|H)=p( y |µ)=N(µ,σ2/n).
In practice, we often have some prior knowledge about

µ, such as, “µ is known from experience to be around a
value µ

0
.” We might express this prior knowledge as

µ~N(µ
0
, τ

0
2), where τ

0
2 represents the uncertainty around

the best guess, µ
0
. Now, according to Bayes’ rule:
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The posterior distribution can be considered as a
merging of the prior opinion about µ and the data. Figure
1 illustrates this updating of opinion about µ for different
priors.

In 1a, the prior knowledge about µ is fairly vague.
Thus, the posterior distribution for µ is dominated by the
data. In 1b, the prior knowledge about µ is more precise
and has more influence on the posterior distribution.

Bayesian Computation

Continuing this example, suppose more realistically that
σ2 is also unknown. A distribution that reflects theoretical
properties of a variance is the inverse Gamma distribution,
so we might take σ2~ IG(a

0
, b

0
), where a

0
 and b

0
 are chosen

to reflect our prior knowledge. Application of Bayes’ rule
results in a joint posterior distribution of µ and σ2 that is
nonstandard and multidimensional, making analytical
solutions difficult.

A popular numerical solution is Markov chain Monte
Carlo (MCMC). MCMC algorithms allow simulation from
a Markov chain whose stationary distribution is p(H|D). If

it is not easy to simulate directly from p(H|D), values can
be proposed from some easily simulated distribution
(such as uniform or normal) and accepted or rejected
according to a rule that ensures that the final set of
accepted values are from the target posterior distribution.
If p(H|D) is high dimensional, it can often be decomposed
into a series of lower dimensional, conditional distribu-
tions, and (possibly different) MCMC algorithms can
iterate around these, eventually forming a sample from the
joint distribution (Besag, 1974).

For this example problem, a basic MCMC algorithm
would be as follows.

• Choose initial values µ
1
, σ

1
2

• Repeat for i=2:k for k large

• Randomly draw σ
i
 from yi ,�|�

2
1−  given in Equation

(2).
• Randomly draw σ

i
2 from the conditional posterior

distribution ),(~,�|�
2
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• Discard the first part of the above chain as “burn-
in,” in which the Markov chain is still approaching
the target posterior distribution from the (perhaps
unlikely) initial values.

• The remaining iterates, µ
i  
 and σ

i
2, represent a large

sample from the target posterior distribution. Graphs

Figure 1.
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