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INTRODUCTION

Bayesian methods provide a probabilistic approach to
machine learning. The Bayesian framework allows us to
make inferences from data using probability models for
values we observe and about which we want to draw some
hypotheses. Bayes theorem provides the means of calcu-
lating the probability of a hypothesis (posterior probabil-
ity) based on its prior probability, the probability of the
observations and the likelihood that the observational
data fit the hypothesis.
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P( | )H D  is defined as the probability of a certain
hypothesis based on a set of observational data given a
certain context (posterior probability of hypothesis H);

P( | )D H  is the likelihood of the observations given a

certain hypothesis; P(H) is the intrinsic probability of
hypothesis H, before considering the evidence D (prior
probability); and P(D) is the probability of the observa-
tions, independent of the hypothesis, that can be inter-
preted as a normalizing constant. Bayes rule can therefore
be reformulated as shown in expression . This means that
the probability of the hypothesis is being updated by the
likelihood of the observed data.
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BACKGROUND

The practical application of Bayes rule to machine learn-
ing is rather straightforward. Given a set of hypotheses H
and a set D of observational data we can estimate the most
probable hypothesis H given D, by comparing different
instances of the previous expression for each hypothesis
H and choosing the one that holds the largest posterior
probability (also called maximum a posteriori probability
or MAP).
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Suppose we have a classification problem where the
class variable is denoted by C and can take values c

1
, c

2
,

..., c
k
. Consider a data sample D represented by n attributes

A
1
, A

2
, ..., A

n
 of which the observations (a

1
, a

2
, ..., a

m
) have

been taken for each instance of D. Suppose that each
instance of the data sample D is classified as c

1
, c

2
, ..., c

k
.

The Bayesian approach to classifying a new instance
would then be to assign the most probable target value (a
class value of type c

i
) by calculating the posterior prob-

ability for each class given the training data set, and from
them choosing the one that holds the maximum a poste-
riori probability.

[ ]MAP arg max P( | ) P( )
i

i i
c C

c D c c
∈

= ⋅ (4)

NAIVE BAYES CLASSIFICATION

Although the idea of applying full-blown Bayesian crite-
ria to analyze a hypothesis space in search of the most
feasible hypothesis is conceptually attractive, it usually
fails to deliver in practical settings. Although we can
successfully estimate P(c

i
) from the training data, calcu-

lating the joint probability P( | )iD c  is usually not feasible:

unless we have a very large training data set, we would
end up with estimates that are representative of a small
fraction of the instance space and are therefore unreliable.
The naive Bayesian classifier attempts to solve this prob-
lem by making the following assumptions:

• Conditional independence among attributes of the
data sample. This means that the posterior probabil-
ity of D, given c

i
 is equal to the product of the

posterior probability of each attribute.
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• The conditional probabilities of each individual
attribute can be estimated from the frequency dis-

tributions of the sample data set D as ij iN N , where

N
ij
 is the number of training examples for which

attribute A
j
 = a

j
 and class value is c

i
; and N

i
 is the

number of training examples for which the class
value is c

i
. If the prior probabilities P(c

i
) are not

known, they can also be estimated by drawing its
probabilities from the sample data set of frequency
distributions.

• To solve the cases in which there are very few or no
instances in the data set for which A

j
 = a

j
 given a

certain class value c
i
, which would in turn render

poor estimates of P( | )j j iA a c=  or make it equal to

zero, a common approach is to estimate

P( | )j j iA a c=  as:
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where α
ij
 and α

i
 can be seen as fictitious counts

coming out of our prior estimate of the probability
we wish to determine. In rigor, this implies consid-
ering a conjugate prior probability given by a
Dirichlet distribution (for more details see Ramoni
& Sebastiani, 1999). A typical method for choosing
α

ij
 and α

i
 in the absence of other information is to

assume uniform distribution of the counts, which
means that if an attribute has r possible values, α

ij 
=

1 and α
i 
= r. This results in:
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These assumptions have the effect of substantially
reducing the number of distinct conditional probability
terms that must be estimated from the training data. To
illustrate the use of the naïve Bayes classifier, consider the
example in Table 1 adapted from Mitchell (1997). We are
dealing with records reporting on weather conditions for
playing tennis. The task is to build a classifier that, by
learning from previously collected data, is able to predict
the chances of playing tennis based on new weather
reports. We can estimate the class probabilities P(play=yes)
and P(play=no) by calculating their frequency distribu-
tions as follows:

P(play=yes) = (# of instances were play=yes) / (total # of
instances) = 9/14

P(play=no) = (# of instances were play=no) / (total # of
instances) = 5/14

The conditional probabilities can be estimated by
applying equation , as shown in Table 1(d). For a new
weather report W={outlook=rain, temp=hot,
Humidity=high, windy =false} the classifier would com-
pute

Table 1. Weather data set
 

outlook temperature humidity windy play  Attribute Name    Values 
sunny hot high false no  outlook      sunny, overcast, rainy 
sunny hot high true no  temperature  hot, mild cool 

overcast hot high false yes  humidity     high, normal 
rainy mild high false yes  windy        true, false 
rainy cool normal false yes  play (class attribute) yes, no 
rainy cool normal true no (b) List of Attributes                           

overcast cool normal true yes   
sunny mild high false no         
  sunny cool normal false yes  Outlook play  play 
rainy mild normal false yes  Outlook yes no Humidity yes no 
sunny mild normal true yes  sunny 3/12 4/8 high 4/11 5/7 

overcast mild high true yes  overcast 5/12 1/8 normal 7/11 2/7 
overcast hot normal false yes  rain 4/12 3/8  

rainy mild high true No  Temperature  Windy  
                                  (a) List of Instances hot 3/12 3/8 false 4/11 4/7 

                                    mild 5/12 3/8 true 7/11 3/7 
(play = yes) 9/14 
(play = no) 5/14 

 cold                   4/12 2/8 
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