
3772 Category: IT Education

Toward a Framework of Programming
Pedagogy
Wilfred W. F. Lau
The University of Hong Kong, Hong Kong

Allan H. K. Yuen
The University of Hong Kong, Hong Kong

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

As a major topic in information technology education,
computer programming has been taught to both major and
non-major students in universities. While there has been
ongoing debate on whether students should be taught pro-
gramming (Soloway, 1993), the literature shows that learning
to program poses a lot of difficulties to novices (Bonar &
Soloway, 1989). Dijkstra (1989) describes programming as
“radical novelty” in which our usual strategy of metaphors
and analogies simply does not apply. Pea (1986) identifies
three types of conceptual bugs which are rooted in a superbug
where “there is a hidden mind somewhere in the programming
language that has intelligent interpretive powers”.

Why is learning to program so difficult? One difficulty is
that learning to program needs the acquisition of a multitude
of inter-related skills. Jenkins (2002) argues that program-
ming is a complicated task, which requires the mastery of
a number of skills such as problem solving, abstraction,
mathematical logic and testing, debugging and so forth. A
novice programmer simply lacks these skills. More impor-
tantly, success in learning to program demands knowledge
of computer itself. Ben-Ari (1998) points out that students
lack a viable mental model to learn programming. On the
other hand, undue emphasis is placed on the learning of
programming syntax (Deek, 1999). In this article, we will
focus on approaches of teaching computer programing.
Winslow (1996) introduced the term “programming peda-
gogy” in his paper. Although programming pedagogy is not
explicitly defined in the paper, the term here refers to any
instructional methods and strategies which are used to teach
students introductory programming. Due to these reasons,
programming pedagogy calls for special attention.

BACKGROUND

Over the years, pedagogical innovations have been proposed
to cope with these difficulties. These include a variety of
programming tools (Smith & Webb, 2000). These tools help
novice programmers to develop programs through program

visualisation and algorithm animation. Deek and McHugh
(1998) evaluate programming tools used to teach program-
ming. One common problem among these tools is that they
fail to integrate into the curriculum. This suggests that there
is a need to investigate what programming pedagogy should
be adopted together with tools to bring about innovations in
programming instruction. This article intends to review on
programming pedagogy reported in the literature. A theo-
retical framework on programming pedagogy grounded on
literature review is proposed which attempts to conceptu-
alise pedagogy in terms of the cognitive and technological
dimensions. For researchers, this review not only provides
a summary of pedagogy adopted to date, but also theoretical
underpinning for future research on programming pedagogy.
For practitioners, the proposed framework can help them
to evaluate and reflect on their own pedagogy with an aim
to improve the quality of teaching and learning computer
programming.

APPROACHES OF TEACHING
PROGRAMMING

We identified seven pedagogical approaches of teaching
computer programming arising from the review of appropriate
literature. The following sections provide a brief description
of each of these approaches.

Structured Programming Approach

In the 1970s, one catchword in programming is structured
programming. It is an approach, which intends to “support
the production of correct, understandable programs which
are easy to modify and maintain” (Freiburghouse & Liskov,
1973). The approach allows control structures of sequence,
selection, and repetition only. The GOTO statement is con-
sidered detrimental to structured programming (Dijkstra,
1968). To facilitate the development of a structured program,
a top-down design, which decomposes a large program
into a manageable smaller program, is used. Programs are
improved successively through stepwise refinement. In this

 3773

Toward a Framework of Programming Pedagogy

T
manner, it is hoped that quality program can be produced.
Although it was advocated in the 1970s, it is still one of the
prevalent programming approaches today.

Problem Solving Approach

Barnes, Fincher, and Thompson (1997) describe a program-
ming methodology consisting of four steps, namely, Under-
standing, Designing, Writing and Reviewing. Following the
same line of thinking, Thompson (1997) proposes a problem
solving approach in teaching functional programming. He
claims that using the approach, “a novice can make substantial
progress in completing a programming task before beginning
to write any program code.” Gries (1974) emphasizes the
importance of problem solving in programming. He argues
that usual assumption that students should have learned
programming after giving tools and examples is not peda-
gogically sound. To address this problem, he suggests the
four-phase process of problem solving by Polya (1957).

Software Development Approach

It is equally important that students should know how to
translate algorithms into syntactically and semantically
correct solution of the problem that form the program. In
this regard, Deek (1999) develops a methodology which
incorporates both the problem solving skills and the program-
ming skills into a single process that provides a framework
for beginning students. As noted by Deek (1999), there are
three kinds of difficulties faced by students when learning to
program: (1) deficiencies in problem solving strategies and
tactical knowledge; (2) ineffective pedagogy of programming
instruction; and (3) misconceptions about syntax, semantics,
and pragmatics. The new approach, which incorporates both
the problem solving skills and the programming skills, can
help address all the three kinds of difficulties.

Small Programming Approach

If programming creates a large cognitive load on novices,
it is reasonable to reduce such load by programming in a
“small” scale. In this sense, we distinguish between the
terms Programming-in-the-small and Programming Lan-
guage-in-the-small.

Glaser, Hartel, and Garratt (2000) introduce the idea
Programming by Number in teaching ML and Java. Program-
ming by Number is intended to get students started in writing
program by providing a step-by-step guidance to students
while allowing flexibility in the design of the solution to a
problem. When writing functions, they suggest the follow-
ing steps: (1) name the function; (2) write down its type; (3)
enumerate all cases; (4) deal with any simple case(s); (5)
list the ingredients in preparation for the complex case(s);

(6) deal with the complex case(s), where some inspiration
is required; and (7) think about the result.

Brusilovsky, Kouchnirenko, Miller, and Tomek (1994)
review on three approaches of teaching introductory program-
ming, namely, the incremental approach, the mini-language
approach, and the sub-language approach. In the incremen-
tal approach, new language subsets, which introduce new
programming language constructs while retaining all the
constructs of preceding subsets, are introduced successively
to novices. In the mini-language approach, a small and
simple language is used to support the first steps in learning
to program. In most cases, a student learns how to program
by controlling an actor, which can be a turtle, a robot, or
any other active entity, in a microworld. The sub-language
approach uses a special starting subset of the full language
which contains easily visualizable operations to introduce
programming to novices. In short, these three approaches
provide a simple and small language subsets and a visually
appealing metaphor embedded in a context-rich environment
to help novices start programming.

Language Teaching Approach

Robertson and Lee (1995) give a research manifesto for
the application of a second natural language acquisition
pedagogy to the teaching of programming languages. They
argue that programming has traditionally taught with little
reference to natural language pedagogy. To conclude, they
provide some areas for further research such as the value
of reading programs before writing, the use of authentic
programs, the study of the cultural milieu of programs, and
so forth. Baldwin and Macredie (1999) argue that research
in the learner strategies in second language pedagogy may
provide insight into programming pegadogy. Based on the
call for a more learner-centred environment, they believe
that learner strategies are one of the issues in teaching pro-
gramming that can help address difficulties in learning to
program. Deek and Friedman (2001) describe their ideas of
how programming and writing are learned in parallel. They
argue that the common element that exists in both domains,
problem solving and program development, provides “new
ways for students to transfer skills between domains”.

Learning Theory Approach

Lister and Leaney (2003) argue that traditional norm-ref-
erencing approach to grading tends to target at average
students. As a result, weaker students cannot program well
and stronger students are not challenged. They suggest a
criterion-referencing approach to grading so that explicit and
clear criteria are set for each grade. In deciding the criteria,
reference is made to the Bloom’s Taxonomy of Educational
Objectives (Bloom, 1956). Macfarlane and Mynatt (1988)
examine the effectiveness of advance organizer in teaching

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/toward-framework-programming-pedagogy/14139

Related Content

Emerging Topics and Technologies in Information Systems
Jaakko Ikävalko, Hänninen, Seppo J., Ari Serkkolaand Ilkka Kauranen (2009). Emerging Topics and

Technologies in Information Systems (pp. 198-207).

www.irma-international.org/chapter/emerging-topics-technologies-information-systems/10198

Developing and Aligning a Knowledge Management Strategy: Towards a Taxonomy and a

Framework
Jean-Pierre Booto Ekioneaand Deborah E. Swain (2010). Information Resources Management: Concepts,

Methodologies, Tools and Applications (pp. 167-183).

www.irma-international.org/chapter/developing-aligning-knowledge-management-strategy/54478

Information Retrieval (IR) and Extracting Associative Rules
Asmae Dami, Mohamed Fakirand Belaid Bouikhalene (2014). Journal of Information Technology Research (pp.

42-62).

www.irma-international.org/article/information-retrieval-ir-and-extracting-associative-rules/124913

Imaging Advances of the Cardiopulmonary System
Holly Llobet, Paul Llobetand Michelle LaBrunda (2009). Encyclopedia of Information Science and Technology,

Second Edition (pp. 1824-1829).

www.irma-international.org/chapter/imaging-advances-cardiopulmonary-system/13825

Leveraging Service Management to Achieve Sustainability Goals: A Case Study
Mark S. Blankeand Thomas Abraham (2014). International Journal of Information Systems and Social Change

(pp. 58-72).

www.irma-international.org/article/leveraging-service-management-to-achieve-sustainability-goals/119557

http://www.igi-global.com/chapter/toward-framework-programming-pedagogy/14139
http://www.igi-global.com/chapter/toward-framework-programming-pedagogy/14139
http://www.irma-international.org/chapter/emerging-topics-technologies-information-systems/10198
http://www.irma-international.org/chapter/developing-aligning-knowledge-management-strategy/54478
http://www.irma-international.org/article/information-retrieval-ir-and-extracting-associative-rules/124913
http://www.irma-international.org/chapter/imaging-advances-cardiopulmonary-system/13825
http://www.irma-international.org/article/leveraging-service-management-to-achieve-sustainability-goals/119557

