
 3739

T

Category: Software & Systems Design

Testing Graphical User Interfaces
Jaymie Strecker
University of Maryland, USA

Atif M Memon
University of Maryland, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

In recent years, an emerging trend in software products has
been toward the use of graphical user interfaces (GUIs).
More user-friendly than traditional, text-based interfaces,
GUIs serve as the front-end for a large portion of today’s
software applications. Technologies like Ajax are helping to
spread familiar GUI interaction styles to Web applications.
With the rise of ubiquitous computing, users are interact-
ing with GUIs in a widening range of situations—not just
with their PCs, but with their dishwashers and cars. Critical
applications, such as banking systems, are moving to GUIs
as well. Thus, quality assurance for GUI-based software is
growing more important every day.

With GUIs, users enjoy many degrees of freedom in the
way they interact with the software. While this benefits us-
ers, it challenges testers. Because users may interact with a
GUI in a variety of unexpected ways, it is difficult to insure
that the software meets its functional requirements (correct-
ness) and non-functional requirements (e.g., usability) for
all possible interactions. The difficulties are compounded by
the frequent intersection of GUIs with other emerging tech-
nologies, including component-based and service-oriented
architectures. New trends in software development, such as
rapid development cycles, globally distributed developers,
and open-source projects, make the quality assurance process
ever more challenging.

This chapter describes the state of the art in testing
GUI-based software. Traditionally, GUI testing has been
performed manually or semimanually, with the aid of cap-
ture-replay tools. Since this process may be too slow and
ineffective to meet the demands of today’s developers and
users, recent research in GUI testing has pushed toward auto-
mation. Model-based approaches are being used to generate
and execute test cases, implement test oracles, and perform
regression testing of GUIs automatically. This chapter shows
how research to date has addressed the difficulties of testing
GUIs in today’s rapidly evolving technological world, and
it points to the many challenges that lie ahead.

BACKGROUND

A GUI provides a visual front-end through which a user
can interact with a software application. Although there are
various models for GUI design, the most commonly used
in practice and in software-testing research—and hence the
model assumed in this chapter—is the WIMP model with
windows, icons, menus, and pointing devices (Nielsen, 1993).
The GUI is made up of widgets—such as buttons, text boxes,
and labels—that the user can manipulate to send input to
the underlying software and the software can, in turn, ma-
nipulate to send output to the user. Each widget has a set of
properties—for example, “font”, “width”, “enabled”—each
of which has some value—for example, “Helvetica”, “100”,
“true” (Yuan & Memon, 2007).

Widgets are contained in windows, which may either
be modal or modeless. A modal window blocks the user’s
interaction with other windows while it is active, whereas a
modeless window imposes no such restrictions. A window’s
state at any particular time is the set of all triples (w,p,v) such
that w is a widget in the window, p is a property of w, and v
is the value of p. The GUI state then consists of the state of
all windows in the GUI (Yuan & Memon, 2007).

As the user interacts with the GUI, the state of both
the GUI and the underlying software can change. When
the user performs an event on the GUI—such as clicking a
button or typing in a text box—a piece of application code
called an event handler is executed. The event is the basic
unit of interaction with a GUI. To accomplish a task, a user
typically must perform multiple events in sequence. Hence,
a GUI test case consists of a sequence of events (Yuan &
Memon, 2007).

Several tools and techniques are available to aid testing
of GUI-based applications, varying greatly in the level of
automation they provide. Ignoring the GUI altogether, test
harnesses like JUnit can interact directly with the underlying
software much like the GUI would. However, this may require
major changes to the GUI’s architecture, and, at any rate, it
leaves an important part of the end-user software untested.

3740

Testing Graphical User Interfaces

JUnit has been extended in tools such as JFCUnit, Pounder,
and Jemmy Module to interact with the application under
test through its GUI. With these tools, test cases must be
written manually. Alternatively, a tester can generate test
cases by recording sequences of events, which the tester
manually performs on the GUI, using a capture-replay tool.
Some capture-replay tools—for example, CAPBAK and
TestWorks—record events in terms of mouse coordinates,
while others—for example, WinRunner, Abbot, and Rational
Robot—record the GUI widgets associated with events. The
latter are more robust in the face of superficial changes to
the GUI layout (Memon & Xie, 2005).

All of the tools and techniques mentioned so far automate
the execution of test cases but still require substantial effort
on the part of the tester to generate test cases, define the test
oracle, and modify the test suite as the application under test
evolves. Tools like the visual test-development environment
created by Ostrand, Anodide, Foster, and Goradia (1998)
streamline the testing process but do not depart from the
conceptualization of GUI testing as a fundamentally manual
process. Similarly, while Kasik and George (1996) have
shown how genetic algorithms can be used to augment a
test suite, they leave much work to the tester. Fortunately,
new techniques based on various types of models of the GUI
are shifting much of the burden of the testing process from
humans to machines.

The most popular type of GUI model, the state-machine
model, makes it possible to generate test cases—or perform
model-checking, a related activity—automatically (Belli,
2001; Berstel, Reghizzi, Roussel, & Pietro, 2005; Dwyer,
Carr, & Hines, 1997; Holzmann & Smith, 1999; Shehady &
Siewiorek, 1997; White & Almezen, 2000). But techniques
based on state-machine models have serious drawbacks.
These techniques require that the model be created manu-
ally, that a formal specification be written, or that the source
code be annotated—in any case, a potentially laborious task
susceptible to human error. Further, since the effectiveness
of the test cases generated from the state-machine model
depends on the model creator’s definition of “state”, two
testers testing the same application may get quite different
results (Yuan & Memon, 2007). Techniques for generating
test cases from UML diagrams suffer from similar weak-
nesses (Vieira, Leduc, Hasling, Subramanyan, & Kazmeier,
2006).

Rather than modeling a GUI in terms of states, others
have modeled it in terms of events. Memon, Pollack, and
Soffa (2001) have used automated planning to generate test
cases that consist of sequences of events chosen to accomplish
tasks specified by the tester. In this approach, model creation
requires substantial human effort: although the events in the
model are identified automatically, their preconditions and
effects must be defined manually. More recently, techniques
have used event-based models to further reduce the amount

of effort required in the testing process while improving its
effectiveness. These are described in the next section.

GUI TESTING wITH EVENT-FLOw
MODELS

Events are central to the dynamic structure of a GUI-based
application. A user accomplishes tasks via the GUI by
performing sequences of events. Thus, the execution of the
application occurs as the execution of a sequence of event
handlers, each of which may depend on and may also af-
fect the state of the application. Users may interact with
the application in unexpected ways, so the event handlers
may be executed in unexpected orderings. In these respects,
GUI-based applications differ from traditional, batch-style
software (e.g., compilers), which receives some input,
processes it, produces some output, and terminates. Tradi-
tional testing techniques like code-based coverage criteria
that were designed for such software may not work as well
for much differently-structured GUI-based applications,
so new techniques have been developed to address GUIs’
event-driven nature (Memon, 2002).

The previous section showed how GUI-testing tools and
techniques have evolved to be faster and more effective.
Notable advances have been achieved through model-based
testing, using various types of models. In recent years, one
type of model has proved particularly successful: the event-
flow graph.

Event-Flow Graph

In an event-flow graph, a GUI is represented by a graph whose
vertices represent events and whose edges represent the fol-
lows relationship. Event e1 is said to follow event e2 if e1 can
be executed immediately after e2, with no events intervening.
Test cases can be generated rapidly and automatically by
traversing the EFG, and coverage criteria can be defined in
terms of the EFG. Variations of the EFG have been used to
further improve the cost-effectiveness of GUI testing. Each
of these topics will be elaborated upon after the process of
creating an EFG is explained (Xie & Memon, 2006).

An EFG can be reverse engineered semi-automatically
from a GUI in a process called GUI ripping. A single GUI
window is ripped by identifying and recording properties
of all of the widgets it contains, then executing any events
available in the window that open new windows. This can
be accomplished by running the GUI with reflection to ac-
cess the currently open windows and inspect their widgets.
Widgets likely to open new windows can be identified
based on conventions in GUI design: clicking on a widget
whose caption ends in “...” typically opens a window. As

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/testing-graphical-user-interfaces/14134

Related Content

Implementation of a Network Print Management System: Lessons Learned
George Kelley, Elizabeth A. Reganand C. Stephen Hunt (2004). Annals of Cases on Information Technology:

Volume 6 (pp. 293-311).

www.irma-international.org/article/implementation-network-print-management-system/44583

A Case of Redeemer’s University Adoption of Institutional Repository Using the Principles of

Electronic Information Management Systems
Samuel C. Avemaria Utuluand Adebayo A. Akadri (2014). Cases on Electronic Records and Resource

Management Implementation in Diverse Environments (pp. 130-149).

www.irma-international.org/chapter/case-redeemer-university-adoption-institutional/82644

Disturbing Realities Concerning Data Policies in Organizations
Donald L. Amoroso, Fred Mcfaddenand Kathy Brittain White (1990). Information Resources Management

Journal (pp. 18-28).

www.irma-international.org/article/disturbing-realities-concerning-data-policies/50929

Information Control, Transparency, and Social Media: Implications for Corruption
Chandan Kumar Jha (2020). Information Diffusion Management and Knowledge Sharing: Breakthroughs in

Research and Practice (pp. 300-318).

www.irma-international.org/chapter/information-control-transparency-and-social-media/242136

Distance Education Initiatives Apart from the PC
José Juan Pazos-Ariasand Martín López-Nores (2009). Encyclopedia of Information Science and Technology,

Second Edition (pp. 1162-1167).

www.irma-international.org/chapter/distance-education-initiatives-apart/13722

http://www.igi-global.com/chapter/testing-graphical-user-interfaces/14134
http://www.igi-global.com/chapter/testing-graphical-user-interfaces/14134
http://www.irma-international.org/article/implementation-network-print-management-system/44583
http://www.irma-international.org/chapter/case-redeemer-university-adoption-institutional/82644
http://www.irma-international.org/article/disturbing-realities-concerning-data-policies/50929
http://www.irma-international.org/chapter/information-control-transparency-and-social-media/242136
http://www.irma-international.org/chapter/distance-education-initiatives-apart/13722

