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ABSTRACT

A self-supervised image segmentation method by a non-dominated sorting genetic algorithm-II (NSGA-
II) based optimized MUSIG (OptiMUSIG) activation function with a multilayer self-organizing neural 
network (MLSONN) architecture is proposed to segment multilevel gray scale images. In the same way, 
another NSGA-II based parallel version of the OptiMUSIG (ParaOptiMUSIG) activation function with a 
parallel self-organizing neural network (PSONN) architecture is purported to segment the color images 
in this article. These methods are intended to overcome the drawback of their single objective based 
counterparts. Three standard objective functions are employed as the multiple objective criteria of the 
NSGA-II algorithm to measure the quality of the segmented images.

INTRODUCTION

Basically, segmentation is the segregation of similar patterns out of dissimilar patterns. A basic and im-
portant technique of segregating an image space into multiple non-overlapping meaningful homogeneous 
regions is on the basis of some characteristics of the pixels, such as, color, intensity or texture, etc. The 
successful classification of the pixels in an image is done on the basis of the inherent features of that 
image and for that reason, some a priori knowledge or/and presumptions about the image are usually 
required (Das, Abraham, & Konar, 2008). Due to the variety of the gray scale and color intensity gamut, 
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the problem of segmentation turns more severe for multilevel gray scale and color images. Different fuzzy 
techniques have been applied successfully for image segmentation as it is quite capable to deal with the 
varied amount of uncertainty, vagueness and imprecision in the real life images. Zhao et al. (Zhao, Fu, 
& Yan, 2001) proposed an entropy function in the search for fuzzy thresholding parameters by exploiting 
the relationship between the fuzzy c-partition and the probability partition. A spatially weighted fuzzy 
c-means (SWFCM) clustering algorithm is invented by Yang et al. (Yang, Zheng, & Lin, 2004). In this 
method, the global spatial neighboring information is used into the standard FCM clustering algorithm. 
A good literature survey of the color image segmentation using fuzzy logic is presented in the literature 
(Bhattacharyya, 2011). A color image segmentation algorithm named, eigen space FCM (SEFCM) 
algorithm, is efficient to segment the images that have the same color as the pre-selected pixels (Yang, 
Hao, & Chung, 2002).

Genetic algorithms (GAs) (Goldberg, 1989; Davis, 1991) are randomized search and optimization 
techniques guided by the principles of evolution and natural genetics. GAs are employed to solve the 
image segmentation problem without knowing the segmentation techniques applied and only require a 
segmentation quality measurement criterion due to generality of the GAs. Population generation, natural 
selection, crossover and mutation are applied over a number of generations for generating potentially 
better solutions. Alander (Alander, 2000) presented a complete survey of GA based image segmenta-
tion. A combined approach of genetic algorithm with the K-means clustering algorithm has been em-
ployed for image segmentation in (Li & Chiao, 2003). GA is applied in the unsupervised color image 
segmentation method as it executes multi-pass thresholding (Zingaretti, Tascini, & Regini, 2002) and 
the different thresholds are employed in different iterations of the genetic algorithm to segment a wide 
variety of non-textured images successfully. A three-level thresholding method for image segmentation 
on the basis of probability partition, fuzzy partition and entropy theory is presented by Tao et al. (Tao, 
Tian & Liu, 2003).

Neural networks are very much efficient for the processing of the images as neural networks have 
different important properties like high degree of parallelism, nonlinear mapping, ability of approxi-
mation, error tolerance etc. The segmentation of gray scale images as well as color images are quite 
efficiently handled by the neural network. Kohonen’s self-organizing feature map (SOFM) (Kohonen, 
1989) is a renowned and efficient competitive neural network due to its properties such as the input 
space approximation, topological ordering, and density matching (Chi, 2011). The utility of SOFM in 
the field of image segmentation, such as segmentation of printed fabric images, or in sonar images is 
fully accounted in (Xu & Lin, 2002; Yao et. al., 2000). Kohonen’s SOFM in accordance with the hybrid 
genetic algorithm (HGA) is employed efficiently to segment the satellite images (Awad, Chehdi & 
Nasri, 2007). A fast convergent network named Local Adaptive Receptive Field Self-organizing Map 
(LARFSOM) is applied to segment color images efficiently (Arajo & Costa, 2009).

A single multilayer self-organizing neural networks (MLSONN) (Ghosh, Pal & Pal, 1993) is capable 
to extract the binary objects from a noisy binary image scene. In this network, the network weights are 
adjusted with a view to derive a stable solution using the standard backpropagation algorithm (Ghosh, 
Pal & Pal, 1993). The multilevel objects cannot be extracted with this network architecture since it is 
characterized by the generalized bilevel/bipolar sigmoidal activation function. A functional modifica-
tion has been incorporated in the MLSONN architecture by Bhattacharyya et al. (Bhattacharyya, 2008, 
2011). They introduced the multilevel sigmoidal (MUSIG) (Bhattacharyya, 2008, 2011) activation 
function that is employed for mapping multilevel input information into multiple scales of gray. The 
different transition levels of the MUSIG activation function is determined by the number of gray scale 
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