
3032 Category: Software & Systems Design

Patterns in the Field of Software Engineering
Fuensanta Medina-Domínguez
Carlos III Technical University of Madrid, Spain

Maria-Isabel Sanchez-Segura
Carlos III Technical University of Madrid, Spain

Antonio de Amescua
Carlos III Technical University of Madrid, Spain

Arturo Mora-Soto
Carlos III Technical University of Madrid, Spain

Javier Garcia
Carlos III Technical University of Madrid, Spain

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

IntroductIon

In the mid 1960’s, the architect Christopher Alexander
(1964) came up with the idea of Patterns, as “a solution
to a problem within a defined context” and developed this
concept. He explains, in a very original way, his ideas of
urban planning and building architecture, using patterns to
explain the “what”, “when”, and “how” of a design.

Alexander invented a Pattern Language that is the fun-
damental to good building and city designs, and describes it
in a collection of repetitive schemas called patterns.

In Computer Science, software is susceptible to concep-
tual patterns. Consequently, Ward Cunningham and Kent
Beck, used Alexander’s idea to develop a programming
pattern language composed of five patterns as an initiation
guide for Smalltalk programming. This work was presented
at the Object-Oriented Programming, Systems, Languages
& Applications Conference (OOPSLA) in 1987.

In the early 1990’s, Erich Gamma and Richard Helm
did a joint research that resulted in the first specific design
patterns catalog. They identified four patterns: Composite,
Decider, Observer, and Constrainer patterns.

According to many authors, OOPSLA ’91 highlighted
the evolutionary process of design patterns. The synergy
between Erich Gamma, Richard Helm, Rala Johnson, and
John Vlissides (better known as the “Gang of Four” or GoF)
and other reputable researchers (Ward Cunningham, Kant
Beck or Doug Lea) definitively launched the study of and
research into Object Oriented Design Patterns.

At the same time, James Coplien, another software en-
gineer, was compiling and shaping a programming patterns

catalogue in C++, which was a significant advance in the
implementation phase in software development. Coplien’s
catalog was published in 1991 under the title “Advanced
C++ Programming Styles and Idioms”.

Between 1991 and 1994 the concept of pattern design
was discussed at international congresses and conferences.
All of these encounters culminated in OOPSLA ’94. The
GoF took advantage of this event to present their compilation
(Gamma, Helm, Johnson & Vlissides, 1995). This publica-
tion, considered at that time as the best book on Object
Orientation, compiled a 23-pattern catalog, founding the
basis of patterns design.

The number of pattern-related works, studies and publica-
tions in general, but especially in design, has exponentially
grown since. However, the different research groups being
born must be cataloged into three fundamental paradigms:

• Theoretical approximations to the software pattern
design concept and pattern languages. Coplien’s work
(Coplien, 1996; 2004; Coplien & Douglas, 1995) stands
out in this field.

• Analysis and compilation of software applications
design patterns. Rising’s efforts (Rising, 1998; 2000)
and Buschmman (Buschmann, Meunier, Rohnert,
Sommerlad & Stal, 1996; Buschmann, Rohnert, Stal
& Schmidt, 2000) are included in this classification.

• The study of special purpose patterns, like antipatterns
(Brown, 1998).

As has been explained, the pattern concept has clear
origins, and an important value as a reuse tool. The main

 3033

Patterns in the Field of Software Engineering

P
problem is that the word pattern has been used almost for
everything, thus losing its original meaning. The goal of this
work is to go back to the definition of patterns and present
how software engineering is working with this concept.

The remainder of this chapter is structured as follows.
Section two provides both, formal and informal definitions
of pattern as well as the formats used to describe them. Sec-
tion three presents a classification of existing patterns in the
field of software engineering. In section four, the authors
describe their conclusions and present the future trends in
section five. A selection of key terms is defined at the end
of the chapter.

Background

Pattern Definition

The knowledge and use of pattern improves communication
between the designer and the developer. According to Erich
Gamma et al. (1995):

“Designers know that you do not have to solve each
problem starting from scratch….you must reuse solutions
which previously worked. When you find a good solution,
you must use it continuously. This experience makes you
an expert.”

Although software engineers knew about design patterns,
it was a tremendous boost for them when design patterns
were systematized and categorized by four engineers Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
known as the Gang of Tour (GoF):

They schematized 23 software design patterns through
templates and used the Unified Modeling Language (UML)
to describe them. They also provided examples of imple-
mentation written in Smalltalk and in C++. These patterns
were later written in oriented-object language such as Java
(Cooper, 1998).

ForMaL dEFInItIon oF SoFtWarE
PattErnS

In this section, the most significant definitions of the software
pattern have been gathered.

The first ever definition, is the one proposed by Alex-
ander:

“A recurring solution to a common problem in a given
context and system of forces” (Alexander, 1979).

Less literary but more concrete is the one proposed by
Riehle and Zullighoven (1996):

“A pattern is the abstraction from a concrete form which
keeps recurring in specific non-arbitrary contexts.”

Nevertheless, the most precise one many authors followed
is that of Gabriel (1998):

“Each pattern is a three-part rule, which expresses a
relation between a certain context, a certain system of
forces which occurs repeatedly in that context, and a certain
software configuration which allows these forces to resolve
themselves.”

Gabriel defined concepts that make up the terminology
of software patterns:

• Forces System: a set of objects and restrictions that have
to be satisfied by the application, such as portability,
flexibility, reuse, and so forth.

• Software Configuration: a set of design rules to be
applied to solve the problem forces.

James Coplien (1996) enumerated the requirements that
a “good” pattern has to carry out:

• Solve a problem: the patterns capture solutions, not
principles or strategy.

• Provide tested solutions: the patterns show neither
theories nor speculations. Simple solutions are not
provided.

• Describe a relation: the patterns describe systems,
structures and mechanism. They do not provide a
simple module.

• Have a human component: the best patterns have to
be useful.

PattErn dEScrIPtIon

Patterns must be described formally so that their content is
available to all. A pattern format is a template with sections,
a formal structure that eases learning, comparison among
other patterns and their use. There are different formats
for describing patterns such as: the Alexander, GoF and
canonical formats.

the alexander Format

Alexander explained his patterns, in a narrative style, in
terms of problem to be solved, described the context in
which the pattern is applied and the proposed solution. So,
each Alexander’s pattern is described according to the fol-
lowing elements:

• Name
• Problem
• Context
• Forces
• Solution

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/patterns-field-software-engineering/14022

Related Content

Gender and Catalog: How Is Latin American Literature Written by Women Transposed Into Digital

Formats?
Adrián R. Vilaand Gloria Alejandra Lynch (2022). Journal of Information Technology Research (pp. 1-23).

www.irma-international.org/article/gender-and-catalog/299379

Enterprise Information Systems Change, Adaptation and Adoption: A Qualitative Study and

Conceptualization Framework
Boris Jukic, Nenad Jukicand Miguel Velasco (2010). Information Resources Management: Concepts,

Methodologies, Tools and Applications (pp. 945-969).

www.irma-international.org/chapter/enterprise-information-systems-change-adaptation/54526

Information Laws
Andrew S. Targowski (2005). Encyclopedia of Information Science and Technology, First Edition (pp. 1464-

1470).

www.irma-international.org/chapter/information-laws/14456

Knowing Protection of Intellectual Contents in Digital Era
Priyanka Vishwakarmaand Bhaskar Mukherjee (2014). Progressive Trends in Electronic Resource

Management in Libraries (pp. 147-165).

www.irma-international.org/chapter/knowing-protection-of-intellectual-contents-in-digital-era/90180

Goals and Requirements for Supporting Controlled Flexibility in Software Processes
Ricardo Martinho, Dulce Domingosand João Varajão (2010). Information Resources Management Journal (pp.

11-26).

www.irma-international.org/article/goals-requirements-supporting-controlled-flexibility/43718

http://www.igi-global.com/chapter/patterns-field-software-engineering/14022
http://www.igi-global.com/chapter/patterns-field-software-engineering/14022
http://www.irma-international.org/article/gender-and-catalog/299379
http://www.irma-international.org/chapter/enterprise-information-systems-change-adaptation/54526
http://www.irma-international.org/chapter/information-laws/14456
http://www.irma-international.org/chapter/knowing-protection-of-intellectual-contents-in-digital-era/90180
http://www.irma-international.org/article/goals-requirements-supporting-controlled-flexibility/43718

