
2042 Category: Software & Systems Design

Inheritance in Programming Languages
Krishnaprasad Thirunarayan
Wright State University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Inheritance is a powerful concept employed in computer
-

ented programming (OOP), and object-oriented databases

used as a concise and effective means of representing and
reasoning with common-sense knowledge (Thirunarayan,
1995). In programming languages and databases, inheritance
has been used for the purpose of sharing data and meth-
ods, and for enabling modularity of software (re)use and
maintenance (Lakshmanan & Thirunarayan, 1998). In this
chapter, we present various design choices for incorporating
inheritance into programming languages from an application
programmer’s perspective. In contrast with the language
of mathematics, which is mature and well-understood, the
embodiment of object-oriented concepts and constructs in a

-
sally accepted. We exhibit programs with similar syntax in
different languages that have very different semantics, and
different looking programs that are equivalent. We compare
and contrast method inheritance, interaction of type system

and their implementation in widely used languages such as
C++ (Stroustrup, 1997), Java (Arnold, Gosling, & Holmes,
2005), and C# (Hejlsberg, Wiltamuth, & Golde, 2006), to
illustrate subtle issues of interest to programmers. Finally,

BACKGROUND

SIMULA introduced the concepts of , class, in-
heritance, and polymorphism for describing discrete event
simulations (Meyer, 1999). Subsequently, object-oriented
programming languages such as Smalltalk, C++, Object
Pascal., and so forth used these concepts for general purpose
programming (Budd, 2002).

 is a run-time structure with state and

behavior as its methods (functions). Class is a static descrip-
tion of objects. (In practice, a class itself can appear as a

instance

and by method we mean instance method. The discussion of

such as private, protected, and private, are beyond the scope
of this chapter.) Inheritance is a binary relation between

in terms of another class (P) incrementally, by adding new

through overriding. A class Q is a subclass of class P if class
Q inherits from class P.

class P {

class Q extends P {

class Main {

f1(), and g() from P, and overrides f() from P.
The variable q of type Q holds a reference to a Q-instance

(an object of class Q) created in response to the constructor
invocation ‘new Q()’ (Gosling, Joy, Steele, & Bracha, 2002).
The variable p holds a reference to the same Q-instance as
variable q (dynamic aliasing) through the polymorphic as-
signment ‘p = q.’ In general., polymorphism is the ability
of a variable of type T to hold a reference to an instance of
class T and its subclasses. The method f1() can be invoked

in class P. The method f1() can be successfully invoked on
a Q-instance due to method inheritance. For a subclass to
be able to reuse separately compiled method binaries in the
ancestor class, the layout of the subclass instances should
coincide with the layout of the ancestor instances on com-

 2043

Inheritance in Programming Languages

Ion a Q-instance referred to by variable p through dynamic
binding. In other words, it runs the code associated with the
object’s class Q rather than the variable’s type P. For the
method calls compiled into the ancestor’s method binaries
to be dynamically bound, the index of the method pointers in
the ancestor method table and the descendent method table
should coincide on the common methods.

The implementation technique for reusing parent method
binaries in a straightforward way works for languages with
only single inheritance of classes. A language supports
multiple inheritance if a class can have multiple parents.
The implementation of multiple inheritance that can reuse
separately compiled parent method binaries requires sophis-
ticated manipulation of object reference (self/this pointer
adjustment) (Stroustrup, 2002, Chapter 15), or hash table
based approach (Appel, 2002, Chapter 14), in general.

Object-oriented paradigm and imperative/procedural
paradigm can be viewed as two orthogonal ways of organizing
heterogeneous data types (data and functions) sharing com-

two paradigms can be understood by considering the impact
of adding new functionality and new data type. Procedural
paradigm incorporates new functions incrementally while
it requires major recompilation to accommodate new data
types. In contrast, the object-oriented paradigm assimilates
new data types smoothly but requires special Visitor design

advantage of object-oriented paradigm is its use of interface
to decouple clients and servers. Wirth (1988) elucidates type
extension that bridges procedural languages such as Pascal
to object-oriented languages such as Modula-3 via the in-
termediate languages such as Modula and Oberon.

COMPARISON OF METHOD
INHERITANCE IN C++, JAVA, AND C#

In this section, we discuss subtle issues associated with
method inheritance in programming languages using ex-
amples from C++, Java and C#.

Single Inheritance and Method Binding
in C++ vs Java

Consider a simple class hierarchy consisting of Rectangle,
ColoredRectangle, and Square, coded in Java. The state of
the instance is formalized in terms of its width and its height,

using perimeter() method which is Rectangle,
inherited by ColoredRectangle, and
in

class Rectangle {

class ColoredRectangle extends Rectangle {

class Square extends Rectangle {

class OOPEg {

The array of rectangles is a polymorphic data structure
that holds instances that are at least a Rectangle. The for-
loop invokes the “correct” perimeter-method on the instance
referred to by the polymorphic reference rs[i] through
run-time binding of the call rs[i].perimeter() to the method
code based on the class of the instance referred to by rs[i]
(dynamic type of rs[i]) rather than the declared type of rs[i]
(static type of rs[i]).

This code can be minimally massaged into a legal C++

keyword virtual in C++. #include’s have been omitted.)

class Rectangle {

virtual

class Square extends Rectangle {

The main(…)-procedure in C++ resembles the cor-
responding main()-method in Java syntactically, but they
are very different semantically. The array of Rectangle
is a homogeneous structure with each element naming a
Rectangle instance. The initialization assignments cause

there is no polymorphism involved. Similarly, the call rs[i].

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/inheritance-programming-languages/13859

Related Content

S
 (2007). Dictionary of Information Science and Technology (pp. 591-667).

www.irma-international.org/chapter//119580

The Impact of Risks and Challenges in E-Commerce Adoption Among SMEs
Pauline Ratnasingam (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 1838-

1844).

www.irma-international.org/chapter/impact-risks-challenges-commerce-adoption/13827

Wrapper Feature Selection based on Genetic Algorithm for Recognizing Objects from Satellite

Imagery
Nabil M. Hewahiand Eyad A. Alashqar (2015). Journal of Information Technology Research (pp. 1-20).

www.irma-international.org/article/wrapper-feature-selection-based-on-genetic-algorithm-for-recognizing-objects-from-

satellite-imagery/135916

Digital Imaging Trek: A Practical Model for Managing the Demand of the Digitally Enabled Traveller
Stephen C. Andradeand Hilary Mason (2008). Information Communication Technologies: Concepts,

Methodologies, Tools, and Applications (pp. 1867-1888).

www.irma-international.org/chapter/digital-imaging-trek/22782

Behavioral Factors in Strategic Alliances
Purnendu Mandal, Dale H. Shaoand Chong W. Kim (2005). Encyclopedia of Information Science and

Technology, First Edition (pp. 243-247).

www.irma-international.org/chapter/behavioral-factors-strategic-alliances/14244

http://www.igi-global.com/chapter/inheritance-programming-languages/13859
http://www.igi-global.com/chapter/inheritance-programming-languages/13859
http://www.irma-international.org/chapter//119580
http://www.irma-international.org/chapter/impact-risks-challenges-commerce-adoption/13827
http://www.irma-international.org/article/wrapper-feature-selection-based-on-genetic-algorithm-for-recognizing-objects-from-satellite-imagery/135916
http://www.irma-international.org/article/wrapper-feature-selection-based-on-genetic-algorithm-for-recognizing-objects-from-satellite-imagery/135916
http://www.irma-international.org/chapter/digital-imaging-trek/22782
http://www.irma-international.org/chapter/behavioral-factors-strategic-alliances/14244

