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INTRODUCTION

objects with geometric properties that change over time, 
where usual geometric properties are the spatial position 

d-dimensional
space. The need to use spatiotemporal databases appears 
in a variety of applications such as intelligent transporta-
tion systems, cellular communications, and meteorology 

tightly with other research areas such as mobile telecom-
munications, and is harmonically integrated with other 
disciplines such as CAD/CAM, GIS, environmental science, 
and bioinformatics. 

Spatiotemporal databases stand at the crossroad of two 
other database research areas: spatial databases (Güting, 
1994; Gaede & Gunther, 1998) and temporal databases 

of spatiotemporal databases needs new data models and 
query languages and novel access structures for storing 
and accessing information. In Güting, Bohlen, Erwig, 
Jensen, Lorentzos, Schneider, and Vazirgiannis (2000) 
a data model and a query language capable of handling 
such time-dependent geometries, including those changing 
continuously that describe moving objects, were proposed; 
the basic idea was to represent time-dependent geometries 
as attribute data types and to provide an abstract data type 
extension to the traditional database data models and query 
languages. In that paper, it was also discussed how various 

temporal and spatial models could possibly be extended to 
be spatiotemporal models. 

BASIC ALGORITHMIC TOOLS

The problem of spatiotemporal indexing is considered in 
the standard external memory model. In this model each 
disk access transfers a contiguous block of B data items in 
a single input/output operation (I/O). The space complexity 
of a data structure is measured in terms of the amount of 
disk blocks it uses, while the time complexity of its various 
operations is expressed with the number of needed I/Os. In 
the sequel, we let N denote the number of stored objects 
and let n=N/B and k=K/B, where K denotes the size of the 
desired output. 

R-Tree and Variants

The R-tree (Guttman, 1984) is a spatial access method; it 
stores objects in Rd with a spatial position and extent and is 
able to answer various geometric queries. In a nutshell, it 
is an hierarchical structure, resembling a classical B-tree, 
where every node has size equal to the disk block size, all 
objects are stored at the leaves of the structure, and all leaves 
are at the same distance from the root. Each node v of the 
R-tree corresponds to a d-dimensional rectangle Rect(v); the 
rectangle corresponding to a leaf is the minimum rectangle 
that encloses the objects stored at the leaf, while the rectangle 
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corresponding to an internal node encloses all the rectangles 
corresponding to its children. Moreover, every node contains 
between m and M children where m, M are parameters whose 
value depends on the block size; this means that the height 
of an R-tree is O(logmn). Searching in the R-tree is done in a 
similar way as in the B-tree, where for both point and region 
queries, the paths where rectangles intersect with the query 
object are followed. In contrast to the B-tree, the R-tree does 
not guarantee that traversing a path of the tree is enough when 
searching for an object, as the bounding rectangles of entries 
in the same nodes may overlap one another. In the worst case, 
the search algorithm may have to visit all nodes, in order to 
answer a query. See, for example, the 2-dimensional R-tree 
of Figure 1 that stores 11 rectangles (n=11) with block size 
B=4. For the given axis-parallel range query (xL, xR, yB, yU)

all nodes in order to determine the K=7 rectangles that are 
enclosed or intersected by the query rectangle.

if the spatial overlap between sibling nodes could be 
minimized. There exists a set of  heuristics to achieve that, 
leading to two known variants of the R-tree: the R+-trees 
(Sellis, Roussopoulos, & Faloutsos, 1987) and the R*-trees 
(Beckmann, Kriegel, Schneider, & Seeger, 1990).  R+-trees 
do not allow the subspaces of each internal node to overlap 
with the subspace of its sibling nodes. However, this clip-
ping of the subspaces has, as an immediate consequence, 
the creation of much more subspaces and thus much more 
leaves. Also an object is assigned to more than one leaf caus-
ing a much larger tree structure.  On the other hand, R*-trees 
embed maintenance algorithms  that aim at minimizing the 
following penalty metrics: (i) the area and  the perimeter 
of each bounding rectangles, (ii) the overlap between two 
sibling bounding rectangles, and (iii) the distance between 
the centroid of a bounding rectangle and that of the node 
containing it. As discussed in the original publication, the 
minimization of these metrics decreases the probability that 

a node is accessed by a range query.   Experimental studies 
show that R*-trees can achieve 50% better query times from 
the common R-trees. 

The interested reader should consult Gaede and Gun-
ther (1998) and Manolopoulos, Theodoridis, and Tsotras 
(2000) for more information concerning the aforementioned 
structures.

Partition Trees

Partition trees are data structures that can handle simplex 
range searching queries and are based on the idea of simplicial 
partitions. A simplicial partition for a set S of N points in Rd

is a collection of pairs  P(S) ={(S1, s1}, (S2, s2),…,(Sm,sm)}
where the Si’s are disjoint subsets of S whose union is S and 
si is a simplex containing Si. The crossing number of P(S)
is the maximum number of simplices in {s1,…,sm} that can 
be crossed by an arbitrary hyperplane.  Matousek  (1992) 
has proved that for any set S and given parameter r, r N,
it is possible to construct a simplicial partition of size r for 
S, whose crossing number is O(r1-1/d), in O(N1+ ) time, for 
any >0.  Using this theorem recursively, it is possible to 
come up with a partition tree T for the set S. The root node 
has O(r) children, which correspond to the simplices of 

partition trees for the simplicial partitions. A query with 
a given query simplex can be answered by starting at the 
root of T and descending towards the leaves, based on the 
relation between the query simplex and the simplices in the 
partitions of the various nodes. In Agarwal, Arge, Erickson, 
Franciosa,  and Vitter (2000),  they described an external 
memory version of static partition trees  that needed O(n)
disk blocks, so that d-dimensional simplex queries could be 
answered in  O(n1-1/d+ +k) I/O s. 

INDEXING TECHNIQUES

Research on spatiotemporal access methods has mainly 
focused on two aspects: (i) storage and retrieval of historical 
information concerning the positions of the moving points, 
and (ii) prediction of future positions. There are two kinds of 
spatiotemporal databases: those that deal with discrete and 
those that deal with continuous movements. In the sequel, 

and we will mainly focus our presentation on continuous 
spatiotemporal databases. 

A sequence of spatiotemporal movements in a discrete 
environment can be considered to be an ordered sequence 
of database snapshots of the object positions/extents taken 
at time instants t1<t2<…, with each time instant denoting 
the moment where a change took place. By taking this 
point of view then it could be possible to handle the index-

Figure 1. An example of an R-tree
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