
 1911

I

Category: Data Mining & Databases

Indexing Techniques for Spatiotemporal
Databases
George Lagogiannis
University of Patras, Greece

Christos Makris
University of Patras, Greece

Yannis Panagis
University of Patras, Greece

Spyros Sioutas
University of Patras, Greece

Evangelos Theodoridis
University of Patras, Greece

Athanasios Tsakalidis
University of Patras, Greece

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

objects with geometric properties that change over time,
where usual geometric properties are the spatial position

d-dimensional
space. The need to use spatiotemporal databases appears
in a variety of applications such as intelligent transporta-
tion systems, cellular communications, and meteorology

tightly with other research areas such as mobile telecom-
munications, and is harmonically integrated with other
disciplines such as CAD/CAM, GIS, environmental science,
and bioinformatics.

Spatiotemporal databases stand at the crossroad of two
other database research areas: spatial databases (Güting,
1994; Gaede & Gunther, 1998) and temporal databases

of spatiotemporal databases needs new data models and
query languages and novel access structures for storing
and accessing information. In Güting, Bohlen, Erwig,
Jensen, Lorentzos, Schneider, and Vazirgiannis (2000)
a data model and a query language capable of handling
such time-dependent geometries, including those changing
continuously that describe moving objects, were proposed;
the basic idea was to represent time-dependent geometries
as attribute data types and to provide an abstract data type
extension to the traditional database data models and query
languages. In that paper, it was also discussed how various

temporal and spatial models could possibly be extended to
be spatiotemporal models.

BASIC ALGORITHMIC TOOLS

The problem of spatiotemporal indexing is considered in
the standard external memory model. In this model each
disk access transfers a contiguous block of B data items in
a single input/output operation (I/O). The space complexity
of a data structure is measured in terms of the amount of
disk blocks it uses, while the time complexity of its various
operations is expressed with the number of needed I/Os. In
the sequel, we let N denote the number of stored objects
and let n=N/B and k=K/B, where K denotes the size of the
desired output.

R-Tree and Variants

The R-tree (Guttman, 1984) is a spatial access method; it
stores objects in Rd with a spatial position and extent and is
able to answer various geometric queries. In a nutshell, it
is an hierarchical structure, resembling a classical B-tree,
where every node has size equal to the disk block size, all
objects are stored at the leaves of the structure, and all leaves
are at the same distance from the root. Each node v of the
R-tree corresponds to a d-dimensional rectangle Rect(v); the
rectangle corresponding to a leaf is the minimum rectangle
that encloses the objects stored at the leaf, while the rectangle

1912

Indexing Techniques for Spatiotemporal Databases

corresponding to an internal node encloses all the rectangles
corresponding to its children. Moreover, every node contains
between m and M children where m, M are parameters whose
value depends on the block size; this means that the height
of an R-tree is O(logmn). Searching in the R-tree is done in a
similar way as in the B-tree, where for both point and region
queries, the paths where rectangles intersect with the query
object are followed. In contrast to the B-tree, the R-tree does
not guarantee that traversing a path of the tree is enough when
searching for an object, as the bounding rectangles of entries
in the same nodes may overlap one another. In the worst case,
the search algorithm may have to visit all nodes, in order to
answer a query. See, for example, the 2-dimensional R-tree
of Figure 1 that stores 11 rectangles (n=11) with block size
B=4. For the given axis-parallel range query (xL, xR, yB, yU)

all nodes in order to determine the K=7 rectangles that are
enclosed or intersected by the query rectangle.

if the spatial overlap between sibling nodes could be
minimized. There exists a set of heuristics to achieve that,
leading to two known variants of the R-tree: the R+-trees
(Sellis, Roussopoulos, & Faloutsos, 1987) and the R*-trees
(Beckmann, Kriegel, Schneider, & Seeger, 1990). R+-trees
do not allow the subspaces of each internal node to overlap
with the subspace of its sibling nodes. However, this clip-
ping of the subspaces has, as an immediate consequence,
the creation of much more subspaces and thus much more
leaves. Also an object is assigned to more than one leaf caus-
ing a much larger tree structure. On the other hand, R*-trees
embed maintenance algorithms that aim at minimizing the
following penalty metrics: (i) the area and the perimeter
of each bounding rectangles, (ii) the overlap between two
sibling bounding rectangles, and (iii) the distance between
the centroid of a bounding rectangle and that of the node
containing it. As discussed in the original publication, the
minimization of these metrics decreases the probability that

a node is accessed by a range query. Experimental studies
show that R*-trees can achieve 50% better query times from
the common R-trees.

The interested reader should consult Gaede and Gun-
ther (1998) and Manolopoulos, Theodoridis, and Tsotras
(2000) for more information concerning the aforementioned
structures.

Partition Trees

Partition trees are data structures that can handle simplex
range searching queries and are based on the idea of simplicial
partitions. A simplicial partition for a set S of N points in Rd

is a collection of pairs P(S) ={(S1, s1}, (S2, s2),…,(Sm,sm)}
where the Si’s are disjoint subsets of S whose union is S and
si is a simplex containing Si. The crossing number of P(S)
is the maximum number of simplices in {s1,…,sm} that can
be crossed by an arbitrary hyperplane. Matousek (1992)
has proved that for any set S and given parameter r, r N,
it is possible to construct a simplicial partition of size r for
S, whose crossing number is O(r1-1/d), in O(N1+) time, for
any >0. Using this theorem recursively, it is possible to
come up with a partition tree T for the set S. The root node
has O(r) children, which correspond to the simplices of

partition trees for the simplicial partitions. A query with
a given query simplex can be answered by starting at the
root of T and descending towards the leaves, based on the
relation between the query simplex and the simplices in the
partitions of the various nodes. In Agarwal, Arge, Erickson,
Franciosa, and Vitter (2000), they described an external
memory version of static partition trees that needed O(n)
disk blocks, so that d-dimensional simplex queries could be
answered in O(n1-1/d+ +k) I/O s.

INDEXING TECHNIQUES

Research on spatiotemporal access methods has mainly
focused on two aspects: (i) storage and retrieval of historical
information concerning the positions of the moving points,
and (ii) prediction of future positions. There are two kinds of
spatiotemporal databases: those that deal with discrete and
those that deal with continuous movements. In the sequel,

and we will mainly focus our presentation on continuous
spatiotemporal databases.

A sequence of spatiotemporal movements in a discrete
environment can be considered to be an ordered sequence
of database snapshots of the object positions/extents taken
at time instants t1<t2<…, with each time instant denoting
the moment where a change took place. By taking this
point of view then it could be possible to handle the index-

Figure 1. An example of an R-tree

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/indexing-techniques-spatiotemporal-databases/13839

Related Content

Theses and Dissertations from Print to ETD: The Nuances of Preserving and Accessing those in

Music
Daniel Gelaw Alemnehand Ralph Hartsock (2014). Cases on Electronic Records and Resource Management

Implementation in Diverse Environments (pp. 41-60).

www.irma-international.org/chapter/theses-dissertations-print-etd/82639

Evaluating Computer-Supported Learning Initiatives
John B. Nash, Cristoph Richterand Heidrun Allert (2005). Encyclopedia of Information Science and

Technology, First Edition (pp. 1125-1129).

www.irma-international.org/chapter/evaluating-computer-supported-learning-initiatives/14397

An Exploratory Study of the Effectiveness of Mobile Advertising
Jianping Peng, Juanjuan Qu, Le Pengand Jing Quan (2017). Information Resources Management Journal (pp.

24-38).

www.irma-international.org/article/an-exploratory-study-of-the-effectiveness-of-mobile-advertising/186886

Reengineering the Selling Process in a Showroom
Jakov Crnkovic, Goran Petkovicand Nebojsa Janicijevic (2002). Annals of Cases on Information Technology:

Volume 4 (pp. 499-512).

www.irma-international.org/article/reengineering-selling-process-showroom/44527

Metrics for the Evaluation of Test-Delivery Systems
Salvatore Valenti (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 2542-

2545).

www.irma-international.org/chapter/metrics-evaluation-test-delivery-systems/13942

http://www.igi-global.com/chapter/indexing-techniques-spatiotemporal-databases/13839
http://www.igi-global.com/chapter/indexing-techniques-spatiotemporal-databases/13839
http://www.irma-international.org/chapter/theses-dissertations-print-etd/82639
http://www.irma-international.org/chapter/evaluating-computer-supported-learning-initiatives/14397
http://www.irma-international.org/article/an-exploratory-study-of-the-effectiveness-of-mobile-advertising/186886
http://www.irma-international.org/article/reengineering-selling-process-showroom/44527
http://www.irma-international.org/chapter/metrics-evaluation-test-delivery-systems/13942

