
789

C

Category: Software & Systems Design

INTRODUCTION

Requirements engineering (RE) is the area of software 
engineering responsible for the elicitation and definition of 
the software system requirements. This task implies join-
ing the knowledge of the services that a software system 
can and cannot provide with the knowledge of clients’ and 
users’ needs (Jackson, 1995; Katasonov & Sakkinen, 2005; 
Kotonya & Sommerville, 1998; Sommerville & Sawyer, 
1997; Sutcliffe, Fickas, & Sohlberg, 2006; Uchitel, Chatley, 
Kramer, & Magee, 2006). Frequently, this activity is done 
by people with a software engineering bias. The underlying 
hypothesis of this choice is that users’ needs are easier to 
understand than the software’s possible behaviors. This is 
not always true; however, this is the metacontext in which 
most RE heuristics and methodologies have been devel-
oped. Understanding clients’ and users’ needs is far more 
complex than merely interviewing selected clients and 
user representatives, compiling all gathered information in 
one document. Defining how to put into service a complex 
software system within an organization requires envisioning 
how the business process of the organization will be in the 
future from both points of view: software organization and 
business organization. This is the key of the RE commit-
ment: to imagine how the future business process will be. 
This RE commitment requires a good knowledge about how 
the business process actually is. Understanding the software 
system’s preexistent context basically means understanding 
the clients’ and users’ culture. In other words, this part of 
the RE is a learning process. 

BACKGROUND

The importance language has in any culture should be 
noticed. Language is an organized system of speech by 
which people communicate with each other with mutual 
comprehension. Also, it is very important to note that by 
the words it contains and the concepts it can formulate, 

language is said to determine the attitudes, understandings, 
and responses in any society. Language, therefore, may be 
both a cause and a symbol of cultural differentiation (Fish-
man, 1999; Hall, Hawkey, Kenny, & Storer, 1986). Language 
reflects environment and technology: Arabic has 80 words 
for camels, while Japanese has more than 20 words for rice 
and Inuit has more than 20 words for snow and ice (Nettle 
& Romaine, 2000). Clients and users have several special 
words that they use when discussing their activities. The 
requirements engineer must pick and understand as many 
of these words as possible as a first step in understanding 
clients’ and users’ culture. 

Glossaries have been used in software engineering with 
different purposes, such as data dictionaries in early database 
books (Codd, 1982) to document entities, attributes, relations, 
types, and services of databases. Thus, it provides a common 
understanding of all the system names to the developer team 
and later to the maintenance team. However, data dictionaries 
are also an important component of structured analysis, data 
recording, data storage, and the details of processes (Gane 
& Sarson, 1982; Senn, 1989), though authors like Gane and 
Sarson suggest that the real name for them should be project 
guide instead of data dictionary. These data dictionaries are 
created during analysis and also used during system design. 
They satisfy five objectives: to manage details, communicate 
common meanings, document system characteristics, help 
the analysis of details and changes, and locate errors and 
omissions of the system.

In this article an RE process beginning with the construc-
tion of a language-extended lexicon (LEL) as its first activity 
(Leite, Hadad, Doorn, & Kaplan, 2000) is addressed, and the 
structure and creation of this LEL is described. 

GLOSSARY CREATION

The word dictionary was coined by Henry Cockeran in 
1623, but the first known dictionaries belong to the seventh 
century B.C., and they contain the most important data of 

Creating Software System Context Glossaries
Graciela D. S. Hadad
Universidad Nacional de La Matanza, Argentina & Universidad Nacional de La Plata, Argentina

Jorge H. Doorn
INTIA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina
Universidad Nacional de La Matanza, Argentina

Gladys N. Kaplan
Universidad Nacional de La Matanza, Argentina & Universidad Nacional de La Plata, Argentina

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



790  

Creating Software System Context Glossaries

the Mesopotamian culture (MSN Microsoft Corporation, 
2006). The first dictionaries were catalogues of unusual, 
difficult, or confusing words and phrases since the common 
vocabulary	was	considered	to	have	no	need	of	an	explanation	
or a definition. The oldest glossary comes from the second 
century A.D. and contains technical Greek words used by 
Hypocrites. It was in later centuries that a catalogue of all the 
words of a language was built: for Arabic. So, the origin of 
glossaries and dictionaries was to give definitions of words 
and phrases of a particular domain; then, they were extended 
to an entire language in lexical dictionaries. Nowadays, 
there	are	different	types	of	dictionaries	covering	different	
necessities,	 like	dictionaries	of	 synonyms	and	 antonyms,	
dictionaries	 of	 idiomatic	 usage,	 etymology	 dictionaries,	
encyclopedic	dictionaries,	bilingual	dictionaries,	glossaries	
in	textbooks,	dictionaries	of	ideologies,	slang	dictionaries,	
and dictionaries of neologisms, among many others.

Most relevant or peculiar words or phrases (named LEL 
symbols) of the universe of discourse (UofD) are included 
in the LEL. Every symbol is identified by its name (includ-
ing	synonyms)	and	two	descriptions:	notion	and	behavioral	
response. The notion contains sentences defining the symbol 
and the behavioral response reflects how it influences the 
UofD. Figure 1 depicts the model used to represent LEL 
symbols.

The LEL is created by filling the blanks in the LEL model 
(see Figure 1) using information obtained from the applica-
tion domain. Intuition, supported with a good understanding 
of the LEL model, may be used to create the lexicon. Upon 
the	experience	and	the	skill	of	the	authors,	this	may	or	may	
not lead to a well-conceived document. If so, apparently 

there is no need for heuristics. On the contrary, heuristics 
are needed, first to allow everyone to complete the process 
successfully	and	second	to	avoid	weaknesses	usually	present	
in apparently good-quality LELs. Those weaknesses range 
from	missing	relevant	symbols	to	the	unnecessary	insertion	
of	some	others,	and	the	inclusion	of	excess	of	details	in	the	
symbol descriptions or the lack of them. 

The lexicon creation process, depicted in Figure 2 using 
an SADT1 model (Ross & Schoman, 1977), consists of five 
independent	activities:	(a)	plan,	(b)	collect,	(c)	describe,	(d)	
verify, and (e) validate.

As seen in Figure 2, the process shows a main stream 
composed of three tasks: plan, collect, and describe. There is 
a well-established feedback when the verification and valida-
tion activities take place. After verifying the LEL, the process 
returns	to	the	describe activity,	where	corrections	are	made	
based on a DEO list.2 After the validate	activity,	the	process	
returns	to	the	collect	activity	and/or	the	describe	activity,	
depending on the validation DEO list, in order to make any 
necessary corrections. For easy reading, the SADT model 
does	not	show	all	the	backtracking	steps	that	may	occur	dur-
ing the construction process. For instance, while describing 
a	symbol,	a	wrongly	assigned	type	may	be	discovered,	thus	
a	back	step	occurs	in	order	to	reclassify	it	(within	the	collect 
activity). Another example of going backward in the process 
could appear when a new term is identified while describing 
another. That is, the strategy is not at all a linear one. It is an 
iterative process where feedback is a constant mechanism. In 
addition	to	this	continuous	feedback,	the	main	stream	does	
not	fully	follow	a	cascade	model	since	in	practice	its	three	
main tasks may partially overlap. For instance, a symbol may 

LEL: It is the representation of the symbols in the application domain language.
Syntax: {Symbol}1

N

Symbol: It is an entry of the lexicon that has a special meaning in the application domain.
Syntax: {Name}1

N		+	{Notion}1
N + {Behavioral Response}1

N

Name: This is the identification of the symbol. Having more than one name represents synonyms.
Syntax: Word | Phrase
										
Notion: It is the denotation of the symbol. 
Syntax: Sentence
										
Behavioral Response: It is the connotation of the symbol. 
Syntax: Sentence

Figure 1. Language-extended lexicon model



 

 

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/creating-software-system-context-glossaries/13666

Related Content

On the Use of Intelligent Systems for the Modelling of Financial Literacy Parameters
H. Tawfik, R. Huang, M. Samy and A.K. Nagar (2009). Journal of Information Technology Research (pp. 17-

35).

www.irma-international.org/article/use-intelligent-systems-modelling-financial/37407

Faculty Competencies and Incentives for Teaching in E-Learning Environments
Kim E. Dooley, Theresa Pesl Murphrey, James R. Lindner and Timothy H. Murphy (2009). Encyclopedia of

Information Science and Technology, Second Edition (pp. 1527-1531).

www.irma-international.org/chapter/faculty-competencies-incentives-teaching-learning/13780

Trust and Technology in Virtual Teams
Steven A. Morris, Thomas E. Marshall and R. Kelly Rainer Jr. (2003). Advanced Topics in Information

Resources Management, Volume 2 (pp. 133-159).

www.irma-international.org/chapter/trust-technology-virtual-teams/4601

Research on Resource Allocation Strategy of PaaS Platform
Hongen Peng and Yabin Xu (2019). Journal of Information Technology Research (pp. 63-76).

www.irma-international.org/article/research-on-resource-allocation-strategy-of-paas-platform/216399

Computer-Aided Diagnosis of Cardiac Arrhythmias
Markos G. Tsipouras, Dimitrios I. Fotiadis and Lambros K. Michalis (2009). Encyclopedia of Information

Science and Technology, Second Edition (pp. 661-666).

www.irma-international.org/chapter/computer-aided-diagnosis-cardiac-arrhythmias/13645

http://www.igi-global.com/chapter/creating-software-system-context-glossaries/13666
http://www.igi-global.com/chapter/creating-software-system-context-glossaries/13666
http://www.irma-international.org/article/use-intelligent-systems-modelling-financial/37407
http://www.irma-international.org/chapter/faculty-competencies-incentives-teaching-learning/13780
http://www.irma-international.org/chapter/trust-technology-virtual-teams/4601
http://www.irma-international.org/article/research-on-resource-allocation-strategy-of-paas-platform/216399
http://www.irma-international.org/chapter/computer-aided-diagnosis-cardiac-arrhythmias/13645

