
268 Category: Software & Systems Design

INTRODUCTION

of programming languages in a syntax-directed fashion. In

and so forth. Our goal is to emphasize its role as a tool for

systems, so our presentation is example rich.

BACKGROUND

The lexical structure and syntax of a language is normally
-

and dynamic semantics of a programming language in a
syntax-directed way.

 N is the start symbol. An attribute grammar
-

mar for the language, A associates each grammar symbol

for computing inherited and synthesized attributes associated

Consider the following attribute grammar that maps

the left column of productions shown below. The number
semantics is formalized by associating a synthesized attribute
val with N, and providing rules for computing the value of
the attribute val
Nl val associated with

r

N ::= 0 N.val = 0
N ::= 1 N.val = 1
N ::= N0 Nl.val = 2 * N val

N ::= N1 Nl.val = 2 * N val + 1

An attribute grammar involving only synthesized attri-
butes is called an S-attributed grammar. It is straightforward
to parse a binary string using this grammar and then compute
the value of the string using a simple top-down left-to-right
traversal of the abstract syntax tree.

The above attribute grammar is not unique. One can
construct a different S-attributed grammar for the same
language and the same semantics as follows.

N ::= 0 N.val = 0, N.len = 1
N ::= 1 N.val = 1, N.len = 1
N ::= 0N Nl.val = N val;
 Nl.len = N .len +1
N ::= 1N Nl.val = 2^ N len + N val;
 Nl.len = N .len +1

Attribute grammars can be devised to specify different
semantics associated with the same language. For instance,
the bit string can be interpreted as a fraction by associating
an inherited attribute pow to capture the left context—the
length of the bit string between left of a non-terminal and
the binary point, to determine the local value or the weight
of the bit.

F ::= . N F.val = N.val, N.pow = 1
N ::= 0 N.val = 0
N ::= 1 N.val = (1 / 2^ N.pow
N ::= 0N Nl.val = N val;
 N .pow = Nl
N ::= 1N Nl.val = (1 / 2^ N.pow val;
 N .pow = Nl

Each production is associated with attribute computation
rules to compute the synthesized attribute val of the left-
hand side non-terminal and the inherited attribute pow of

for the interested reader to devise an S-attributed grammar

APPLICATIONS OF ATTRIBUTE
GRAMMARS

Attribute grammars provide a modular framework for for-
mally specifying the semantics of a language based on its

modular, we emphasize its role in structuring
-

Attribute Grammars and Their Applications
Krishnaprasad Thirunarayan
Wright State University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

269

Attribute Grammars and Their Applications

A
tions. That is, it is possible to develop and understand the
attribute computation rules one production at a time. By
framework -
tion, rather than conceptualizing the meaning. For instance,
denotational semantics, axiomatic semantics, and operational

-
tribute grammar formalism by appropriately choosing the

and analyzing subtle semantic differences.
In this section, we illustrate the uses and the subtleties

associated with attribute grammars using examples of con-
temporary interest. Traditionally, attribute grammars have
been used to specify various compiler activities formally. We

variables in a straight-line program. Attribute grammars can
also be used to specify compiler generator activities. We show

enable attribute grammars satisfying certain restrictions to

-
mars can be seen to underlie several database algorithms. We
substantiate this by discussing the magic sets for optimizing
bottom-up query processing engine. We also discuss how
attribute grammars can be used for developing and specify-

Type Checking, Type Inference, and
Code Generation

type of variable x is double. The binary arithmetic operation

typ = int
typ

typ typ = typ
typ

“:-” stands for logical if, and “,” stands for logical and.

-

Attribute grammar specifying the translation of an equiva-

code
code
code typ = int

typ = int
code code
code code

typ = int
code code

code code

The attribute typ
code
append operation. Java compiler maps the formal parameters

result on top of the stack; and i2d stands for coercing an

generator has to cater to variations on whether the method
is static or instance, whether the formal arguments require

types or reference types, etc, and all this can be made explicit
via attribute grammars.

available for specifying the semantics on the ease of writing

sound and complete attribute computation in one-pass using
top-down left-to-right traversal of the abstract syntax tree.

We associate synthesized attributes id and ids

U

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/attribute-grammars-their-applications/13584

Related Content

A Hidden Markov Model Combined With Markov Games for Intrusion Detection in Cloud
Priti Narwal, Deepak Kumarand Shailendra N. Singh (2019). Journal of Cases on Information Technology (pp.

14-26).

www.irma-international.org/article/a-hidden-markov-model-combined-with-markov-games-for-intrusion-detection-in-

cloud/234406

eCRM in a Manufacturing Environment
Aberdeen Leila Bordersand Wesley J. Johnston (2005). Encyclopedia of Information Science and Technology,

First Edition (pp. 966-971).

www.irma-international.org/chapter/ecrm-manufacturing-environment/14369

Beyond Rigor and Relevance: Producing Consumable Research about Information Systems
Daniel Robeyand M. Lynne Markus (1998). Information Resources Management Journal (pp. 7-16).

www.irma-international.org/article/beyond-rigor-relevance/51043

Usability Evaluation of E-Learning Systems
Shirish C. Srivastava, Shalini Chandraand Hwee Ming Lam (2009). Encyclopedia of Information Science and

Technology, Second Edition (pp. 3897-3903).

www.irma-international.org/chapter/usability-evaluation-learning-systems/14158

Faculty Competencies and Incentives for Teaching in E-Learning Environments
Kim E. Dooley, Theresa Pesl Murphrey, James R. Lindnerand Timothy H. Murphy (2009). Encyclopedia of

Information Science and Technology, Second Edition (pp. 1527-1531).

www.irma-international.org/chapter/faculty-competencies-incentives-teaching-learning/13780

http://www.igi-global.com/chapter/attribute-grammars-their-applications/13584
http://www.igi-global.com/chapter/attribute-grammars-their-applications/13584
http://www.irma-international.org/article/a-hidden-markov-model-combined-with-markov-games-for-intrusion-detection-in-cloud/234406
http://www.irma-international.org/article/a-hidden-markov-model-combined-with-markov-games-for-intrusion-detection-in-cloud/234406
http://www.irma-international.org/chapter/ecrm-manufacturing-environment/14369
http://www.irma-international.org/article/beyond-rigor-relevance/51043
http://www.irma-international.org/chapter/usability-evaluation-learning-systems/14158
http://www.irma-international.org/chapter/faculty-competencies-incentives-teaching-learning/13780

